QMGreensite_merged

(bbancia) #1

11.4. EIGENFUNCTIONSOFANGULARMOMENTUM 187


havejustcomputed,are


Y 00 =



1
4 π

Y 11 = −


3
8 π

sinθeiφ

Y 10 =



3
4 π

cosθ

Y 1 ,− 1 =



3
8 π

sinθe−iφ

Y 22 =



15
32 π

sin^2 θe^2 iφ

Y 21 = −



15
8 π

sinθcosθeiφ

Y 20 =



5
16 π

(3cos^2 θ−1)

Y 2 ,− 1 =



15
8 π

sinθcosθe−iφ

Y 2 ,− 2 =



15
32 π

sin^2 θe−^2 iφ (11.103)

Thereisanicegraphicalwayofrepresentingthesphericalharmonics. Themodulus
ofthesphericalharmonics|Ylm|isafunctiononlyofθ,andisindependentofφ.So,
inpolarcoordinates(r,θ)whereθ isthe angleawayfromthe z-axis,we plotthe
function
r(θ)=|Ylm(θ,φ)| (11.104)


TheresultingdiagramsareshowninFig.[11.3].



  • TheRigidRotator Asafirstapplicationofthesphericalharmonics,letus
    considerarigidrodwithmomentofinertiaI,whichpivotsfreelyaroundonefixed
    endatr=0.Sincethelengthoftherodisfixed,thegeneralizedcoordinatesarethe
    angularpositionoftherod(θ,φ).TheclassicalHamiltoniandescribingthedynamics
    ofthissimplesystemis


H=

1


2 I


L^2 (11.105)


where%Listheangularmomentum.ThecorrespondingSchrodingerequationisthen
simply


H ̃φlm(θ,φ)=^1
2 I

L ̃^2 φlm(θ,φ)=Elmφlm(θφ) (11.106)
Free download pdf