QMGreensite_merged

(bbancia) #1

11.5. THERADIALEQUATIONFORCENTRALPOTENTIALS 191



  • TheFreeParticle ThesimplestpossiblecentralpotentialisV(r)=0. Ifwe
    write


E=

̄h^2 k^2
2 m

(11.128)


Thentheradialequationis


d^2 Rkl
dr^2

+


2


r

dRkl
dr

+


[
k^2 −

l(l+1)
r^2

]
Rkl(r)= 0 (11.129)

Rescalingthercoordinate,
u=kr (11.130)


thisbecomes [
d^2
du^2


+


2


u

d
du

+


(
1 −

l(l+1)
u^2

)]
Rkl(r)= 0 (11.131)

Writing
Rkl(r)=Wl(u) (11.132)


wehaveasecond-orderdifferentialequation


d^2 Wl
du^2

+


2


u

dWl
du

+


(
1 −

l(l+1)
u^2

)
Wl= 0 (11.133)

whichisknown as theSpherical Bessel Equation. Solutionsof this equation,
whicharefiniteanddifferentiableatr = 0 arethespherical Bessel functions
Wl(u)=jl(u),thefirstfewofwhicharelistedbelow:


j 0 (u) =

sin(u)
u
j 1 (u) =

sin(u)
u^2


cos(u)
u
j 2 (u) =

( 3


u^3


1


u

)
sin(u)−

3


u^2

cos(u) (11.134)

Puttingeverythingtogether,theeigenstatesofenergyandangularmomentum


{H ̃, L ̃^2 ,L ̃z} (11.135)

forV = 0 are
φklm(r,θ,φ)=jl(kr)Ylm(θ,φ) (11.136)


witheigenvalues


Ek=

̄h^2 k^2
2 m

L^2 =l(l+1) ̄h^2 Lz=m ̄h (11.137)

Sincethereisoneandonlyoneeigenstatecorrespondingtoagivensetofeigenvalues
of{H ̃, L ̃^2 ,L ̃z},itfollowsthatE, L^2 , Lzisacompletesetofobservables.

Free download pdf