QMGreensite_merged

(bbancia) #1

256 CHAPTER16. LIVEWIRESANDDEADSTARS


Butalso


ψE(x) = TaT−aψE
= λEλ′EψE
= ψE(x) (16.14)

Thismeansthat λ′E =(λE)−^1. Insert thatfactinto(16.13)andweconcludethat
λ∗E=(λE)−^1 ,i.e.
λE=exp(iKa) (16.15)


forsomeK.Inthiswaywearriveat


Bloch’sTheorem


ForpotentialswiththeperiodicitypropertyV(x+a)=V(x),eachenergyeigen-
stateoftheSchrodingerequationsatisfies


ψ(x+a)=eiKaψ(x) (16.16)

forsomevalueofK.


ItisalsoeasytoworkoutthepossiblevaluesofK,fromthefactthat

ψ(x) = ψ(x+L)
= (Ta)Nψ(x)
= exp[iNKa]ψ(x) (16.17)

whichimplies


K=

2 π
Na

j j= 0 , 1 , 2 ,...,N− 1 (16.18)

ThelimitingvalueofjisN−1,simplybecause


exp[i 2 π

j+N
N

]=exp[i 2 π

j
N

] (16.19)


soj≥Ndoesn’tleadtoanyfurthereigenvalues(jandN−jareequivalent).
AccordingtoBloch’stheorem,ifwecansolve fortheenergy eigenstatesinthe
region 0 ≤x≤a,thenwehavealsosolvedforthewavefunctionatallothervaluesof
x. NowtheperiodicdeltafunctionpotentialV(x)vanishesintheregion 0 <x<a,
sointhisregion(callitregionI)thesolutionmusthavethefree-particleform


ψI(x)=Asin(kx)+Bcos(kx) E=

h ̄^2 k^2
2 m

(16.20)

Free download pdf