QMGreensite_merged

(bbancia) #1

276 CHAPTER17. TIME-INDEPENDENTPERTURBATIONTHEORY


17.4.1 Diagonalizing theSubmatrix


Equations(17.74)givetheperturbativesolutionstoHφn =Enφnto firstorderin
λ,when thefirstq energyeigenvalues aredegenerate, providing onecan solvethe
eigenvalueequation


V φn=Enφn (17.75)

Sincethefirstq eigenstates{φ(0)n , n= 1 , 2 ,...,q}areabasisofthe q-dimensional
subspace,wecanwrite


φn=

∑q

i=0

aniφ(0)i (17.76)

Writingthe{φ(0)n ,n= 1 , 2 ,..q}asbasisvectors,asineq.(17.55),wecanwritethe
eigenvectorsφnintheq-dimensionalsubspaceintheform


φ%n=









an 1
an 2
an 3
.
.
.
anq









(17.77)


(In thefullHilbertspace φnis aninfinite-componentvector,withzerosfollowing
anq.)Then,inmatrixnotation,theeigenvalueproblem(17.75)issimply








V 11 V 12 V 13.. V 1 q
V 21 V 22 V 23.. V 2 q
V 31 V 32 V 33.. V 3 q

......
......
Vq 1 Vq 2 Vq 3.. Vqq








φ%n=Enφ%n (17.78)

Wehavealreadydiscussedhowtosolvetheeigenvalueproblemfora 2 × 2 matrix,
forexampleinsolvingfortheeigenstatesofthePaulispinmatrixσyinChapter13.
Ingeneral,onefirstsolvesfortheeigenvaluesEnbysolvingthesecularequation


det[V−EI]= 0 (17.79)

whereIistheq×q unitmatrix. Thesecularequationisaq-thorderpolynomial
which(ingeneral)hasqroots. Theserootsarethesetofeigenvaluesofthematrix
V,whichwehavedenoted{En}. Then,foreacheigenvalue,wesolveforthevector
φ%nineq.(17.78)algebraically(asillustratedfortheeigenstatesofσyinChapter13).

Free download pdf