QMGreensite_merged

(bbancia) #1

278 CHAPTER17. TIME-INDEPENDENTPERTURBATIONTHEORY


andtheφm(x)andφn(y)areone-dimensionalharmonicoscillatoreigenstates. The
totalenergyeigenvalueisthesumofEm+Em


φ(0)mn(x,y) = φm(x)φn(y)
Emn(0) = ̄hω(m+n+1) (17.89)

ItseasytoseethattheenergyE(0) 00 isunique,thatE 01 (0)=E(0) 10 istwo-folddegenerate,


E(0) 20 =E 11 (0)=E 02 (0)isthree-folddegenerate,andsoon(ingeneral,theenergyEmn^0 is
(m+n+1)-folddegenerate).
NowintroduceaperturbingpotentialV′=λxy,


H=H 0 +λxy (17.90)

Asanexerciseindegenerateperturbationtheory,wewillnowcomputethecorrection
totheenergiesE 10 (0)=E 01 (0)ofthefirstexcitedstates.
Thefirsttwoexcitedstateswithdegenerateenergyeigenvalues,φ 10 andφ 01 ,spana
two-dimensionalsubspaceoftheHilbertspace. Ourfirsttaskistofindtheeigenstates
ofthe 2 × 2 matrix


V =

[
〈φ 10 |xy|φ 10 〉 〈φ 10 |xy|φ 01 〉
〈φ 01 |xy|φ 10 〉 〈φ 01 |xy|φ 01 〉

]
(17.91)

Using


xy=

1


2 β^2

(a+a†)(b+b†) β≡



̄h

(17.92)


weget


〈φ 10 |xy|φ 10 〉 =

1


2 β^2

〈φ 1 (x)|(a+a†)|φ 1 (x)〉〈φ 0 (y)|(b+b†)|φ 0 (y)〉= 0

〈φ 01 |xy|φ 01 〉 =

1


2 β^2

〈φ 0 (x)|(a+a†)|φ 0 (x)〉〈φ 1 (y)|(b+b†)|φ 1 (y)〉= 0

〈φ 10 |xy|φ 01 〉 =

1


2 β^2

〈φ 1 (x)|(a+a†)|φ 0 (x)〉〈φ 0 (y)|(b+b†)|φ 1 (y)〉=

1


2 β^2

〈φ 01 |xy|φ 10 〉 =

1


2 β^2

〈φ 0 (x)|(a+a†)|φ 1 (x)〉〈φ 1 (y)|(b+b†)|φ 0 (y)〉=

1


2 β^2
(17.93)

andtherefore


V=

1


2 β^2

[
0 1
1 0

]
(17.94)

Theproblem of findingthe eigenvectorsand eigenvalues (“diagonalizing”)the
matrixV isprettymuchthesameas solvingtheeigenvalueproblemforthePauli
matrixσx.Firstwesolvethesecularequation


det[V−EI]=E^2 −

(
1
2 β^2

) 2
= 0 (17.95)
Free download pdf