QMGreensite_merged

(bbancia) #1

310 CHAPTER21. QUANTUMMECHANICSASLINEARALGEBRA


or,inthecaseofaD×Dmatrix,solvetheDsimultaneousequations


∑D

j=1

miju(jn)=λnu(in) (i= 1 , 2 , 3 ,...,D) (21.34)

Thegeneralsolutionofthisequation,intermsofdeterminants,isgiveninanylinear
algebrabook.Thesolutionisdenotedu(n),andshouldbenormalizedsothat


[u∗ 1 ,u∗ 2 ]

[
u 1
u 2

]
=

∑D

i=1

u∗iui= 1 (21.35)

Theorem


Theeigenvalues ofaHermitianmatrixareallreal. Anytwoeigenvectorsof a
Hermitianmatrix,whichcorrespondtodifferenteigenvalues,areorthogonal.


Proof: Let u(m) andu(n) betwoeigenvectorsof a Hermitianmatrix H, with
eigenvaluesλn, λmrespectively. Considerthequantity


Q=


ij

(uni)∗Hiju(jm) (21.36)

Sinceumisaneigenvector,weknowthat


j

Hiju(jm)=λmu(im) (21.37)

so
Q=λm



i

(u(in))∗u(im)=λmu(n)·u(m) (21.38)

Ontheotherhand,wecanwriteQas


Q=


ij

(
Hij∗u(in)

)∗
u(jm) (21.39)

BecauseHisanHermitianmatrix,


Hij∗=Hji (21.40)

so


Q =


ij

(
Hjiu(in)

)∗
u(jm)

=



j

(λnu(jn))∗u(jm)

= λ∗nu(n)·u(m) (21.41)
Free download pdf