QMGreensite_merged

(bbancia) #1

21.1. REVIEWOFVECTORSANDMATRICES 311


Therefore
λ∗nu(n)·u(m)=λmu(n)·u(m) (21.42)


Forn=m,thisimplies
λn isrealforalln (21.43)


whichprovesthefirstpartoftheorem.Forn+=m,andλn+=λm,italsoimplies


u(n)·u(m)= 0 λn+=λm (21.44)

whichprovesthesecondpartoftheorem.



  • Example LetsfindtheeigenvaluesandeigenvectorsoftheHermitianmatrix


H=


[
0 i
−i 0

]
(21.45)

First,tofindtheeigenvalues


det

[
−λ i
−i −λ

]
=λ^2 − 1 = 0 (21.46)

sotheeigenvaluesare


λ 1 =+1 λ 2 =− 1 (21.47)

Notethatthesearebothreal,inagreementwiththeoremabove. Thensolveforthe
eigenvectoru 1


[
0 i
−i 0

][
u^11
u^12

]
=

[
u^11
u^12

]

[
iu^12
−iu^11

]
=

[
u^11
u^12

]
(21.48)

whichhasthesolution


u^12 =−iu^11 or u^1 =

[
u^11
−iu^11

]
(21.49)

Finally,wedetermineu^11 bynormalization


1 = u^1 ·u^1 =|u^11 |^2 +|−iu^11 |^2 = 2 |u^11 |^2

=⇒ u 1 =

1



2


(21.50)

Free download pdf