QMGreensite_merged

(bbancia) #1

21.3. HILBERTSPACE 329


= [φ∗ 0 (x),φ∗ 1 (x),φ∗ 2 (x),...]







φ 0 (y)
φ 1 (y)
φ 2 (y)
.
.
.







(21.160)


Takingtheinnerproductoftherowandcolumnvectors,wegettheidentity


∑∞

n=0

φ∗n(x)φn(y)=δ(x−y) (21.161)

Nextweturntothematrixelementsofoperators. Takingtheinnerproductof
theeigenvalueequationHho|φn>=En|φn>withthebra<φm|gives


Hmnho ≡<φm|Hho|φn>=Enδmn (21.162)

i.e.Hmnho isadiagonalmatrix


Hho=







E 1 0 0...


0 E 2 0...


0 0 E 3...


......


......


......








(21.163)


ThematrixrepresentationsXmnandPmnareeasilyobtainedusingtheraisingand
loweringoperatorrelations


X =



̄h
2 mω

(a†+a)

P = i


mω ̄h
2

(a†−a)

a†|φn> =


n+ 1 |φn+1>
a|φn> =


n|φn− 1 > (21.164)

Then


Xmn =


̄h
2 mω

[
<φm|a†|φn>+<φm|a|φm>

]

=



̄h
2 mω

[√


n+ 1 δm,n+1+


nδm,n− 1

]
(21.165)

andlikewise


Pmn=i


mω ̄h
2

[√


n+ 1 δm,n+1−


nδm,n− 1

]
(21.166)
Free download pdf