QMGreensite_merged

(bbancia) #1

374 CHAPTER24. THEFEYNMANPATHINTEGRAL


Thisexamplegeneralizesinastraightforwardway


δ
δf(x)

fn(y) = lim!→ 0

(f(y)+!δ(y−x))n−fn(y)
!
= nfn−^1 (y)δ(x−y)
δ
δf(x)

R(f(y)) = lim
!→ 0

R(f(y)+!δ(y−x))−R(f(y))
!

=

∂R(f(y))
∂f(y)

δ(x−y) (24.39)

Functional differentiation isthe easiest and quickest way to derive the Euler-
Lagrangeequationsofmotion,fromthecondition


δS
δx(t)

= 0 (24.40)


thattheactionshouldbestationarywithrespecttoaninfinitesmalchangeofpath.
Thisworksasfollows:


0 =

δS
δx(t)

=

δ
δx(t)


dt′

{
1
2

mx ̇^2 −V(x(t′))

}

=



dt′

{
1
2

m

δ
δx(t)

x ̇^2 −

δ
δx(t)

V(x(t′))

}
(24.41)

Now, usingthe definition of the functionalderivative and the properties of delta
functions,wehave


m

δ
δx(t)

x ̇^2 = lim
!→ 0

[∂t′(x(t′)+!δ(t−t′))]^2 −(∂t′x(t′))^2
!
= 2 x ̇(t′)∂t′δ(t−t′)
= − 2 ∂^2 t′x(t′)δ(t−t′) (24.42)

Then


0 =



dt′

{
−m∂t^2 ′x(t′)δ(t−t′)−

∂V(x(t′))
∂x(t′)

δ(t−t′)

}

= −m∂t^2 x−

∂V


∂x

(24.43)


whichis,ofcourse,Newton’sLawofmotionF=ma.
Togetalittlemorepracticewithfunctionalderivatives,letsfindtheequationsof
motionforawaveonastring. Denotethewavefunctionofthestring(whichinthis

Free download pdf