Solutions 185
friction is //sin a + I sin a, and the equilibrium
condition will be written in the form
1 1+ sin 2 a
sin a +sin a ) =Fir/
sin
cos a sin a cos a sin a
Ffr N = N
1+ sine a
—
sins a+ cos 2 a
1
= N
2 tan a+ cot a
On the other hand, the friction cannot exceed
the sliding friction RN, and hence
1
11 > 2 tan a+ cot a '
This inequality must be fulfilled at all values of
the angle a. Consequently, in order to find the
0 t‘
Ffr
Fig. 181
minimum coefficient of friction !Amin, we must find
the maximum of the function (2x 2 + 1/x 2 )-1, where
x 2 = tan a. The identity 2x 2 + 1/x 2 = (V^2 x —
110 -j- 2 VI implies that the maximum value of
Ni cos a= Ff r /
whence