Solutions 185friction is //sin a + I sin a, and the equilibrium
condition will be written in the form1 1+ sin 2 a
sin a +sin a ) =Fir/
sincos a sin a cos a sin a
Ffr N = N
1+ sine a—
sins a+ cos 2 a
1
= N
2 tan a+ cot aOn the other hand, the friction cannot exceed
the sliding friction RN, and hence1
11 > 2 tan a+ cot a 'This inequality must be fulfilled at all values of
the angle a. Consequently, in order to find the0 t‘FfrFig. 181
minimum coefficient of friction !Amin, we must find
the maximum of the function (2x 2 + 1/x 2 )-1, where
x 2 = tan a. The identity 2x 2 + 1/x 2 = (V^2 x —
110 -j- 2 VI implies that the maximum value of
Ni cos a= Ff r /whence