Gödel, Escher, Bach An Eternal Golden Braid by Douglas R. Hofstadter

(Dana P.) #1
Va:-Sa=O
3b:Va:-Sa=b

aXiom
existence

You might now try to shunt symbols, according to rules so far given, to
produce the theorem -Vb:3a:Sa=b.

Rules of Equality and Successorship

We have given rules for manipulating quantifiers, but so far none for the
symbols '=' and'S'. We rectify that situation now. In what follows, r, 5, and
t all stand for arbitrary terms.

RULES OF EQUALITY:
SYMMETRY: If r = 5 is a theorem, then so is 5 = r.
TRANSITIVITY: If r = 5 and 5 = t are theorems, then so is r = t.
RULES OF SUCCESSORSHIP:
ADD S: If r = t is a theorem, then Sr = St is a theorem.
DROP S: If Sr = St is a theorem, then r = t is a theorem.
Now we are equipped with rules that can give us a fantastic variety of
theorems. For example, the following derivations yield theorems which are
pretty fundamental:
(1) Va:Vb:(a+Sb)=S(a+b)
(2) Vb:(SO+Sb)=S(SO+b)
(3) (SO+SO)=S(SO+O)
(4) Va:(a+O)=a
(5) (SO+O)=SO
(6) S(SO+O)=SSO
(7) (SO+SO)=SSO

axiom 3
specification (SO for a)
specification (0 for b)
axiom 2
specification (SO for a)
add S
transitivity (lines 3,6)

* * * * *
(1) Va:Vb:(a'Sb)=((a'b)+a)
(2) Vb:(SO'Sb)=((SO'b)+SO)
(3) (SO·SO)=((SO·O)+SO)
(4) Va:Vb:(a+Sb)=S(a+b)
(5) Vb:((SO'O)+Sb)=S((SO'O)+b)
(6) ((SO' O)+SO)=S((SO· 0) +0)
(7) Va:(a+O)=a
(8) ((SO·O)+O)=(SO·O)
(9) Va:(a'O)==O
(10) (SO'O)=O
(11) ((SO'O)+O)=O
(12) S((SO'O)+O)=SO
(13) ((SO'O)+SO)=SO
(14) (SO'SO)==SO

Typographical Number Theory


axiom 5
specification (SO for a)
specification (0 for b)
axiom 3
specification ((SO' 0) for a)
specification (0 for b)
axiom 2
specification ((SO.O) for a)
axiom 4
specification (SO for a)
transitivity (lines 8,10)
add S
transitivity (lines 6,12)
transitivity (lines 3,13)

219
Free download pdf