309 – 323 (2014). doi:10.1016/j.neuron.2014.05.033;
pmid: 24952961- M. J. Hawrylyczet al., An anatomically comprehensive atlas of
 the adult human brain transcriptome.Nature 489 , 391– 399
 (2012). doi:10.1038/nature11405; pmid: 22996553
- J. A. Milleret al., Transcriptional landscape of the prenatal
 human brain.Nature 508 , 199–206 (2014). doi:10.1038/
 nature13185; pmid: 24695229
- Y. Zhanget al., An RNA-sequencing transcriptome and splicing
 database of glia, neurons, and vascular cells of the cerebral
 cortex.J. Neurosci. 34 , 11929–11947 (2014). doi:10.1523/
 JNEUROSCI.1860-14.2014; pmid: 25186741
- Y. Zhanget al., Purification and characterization of progenitor
 and mature human astrocytes reveals transcriptional and
 functional differences with mouse.Neuron 89 ,37–53 (2016).
 doi:10.1016/j.neuron.2015.11.013; pmid: 26687838
- A. Zeiselet al., Molecular architecture of the mouse nervous
 system.Cell 174 , 999–1014.e22 (2018). doi:10.1016/
 j.cell.2018.06.021; pmid: 30096314
- B. B. Lakeet al., Integrative single-cell analysis of transcriptional
 and epigenetic states in the human adult brain.Nat. Biotechnol. 36 ,
 70 – 80 (2018). doi:10.1038/nbt.4038;pmid: 29227469
- R. D. Hodgeet al., Conserved cell types with divergent features
 in human versus mouse cortex.Nature 573 ,61–68 (2019).
 doi:10.1038/s41586-019-1506-7; pmid: 31435019
- K. W. Kelley, H. Nakao-Inoue, A. V. Molofsky, M. C. Oldham,
 Variation among intact tissue samples reveals the core
 transcriptional featuresof human CNS cell classes.
 Nat. Neurosci. 21 , 1171–1184 (2018). doi:10.1038/s41593-018-
 0216-z; pmid: 30154505
- J. R. Eckeret al., The BRAIN Initiative Cell Census Consortium:
 Lessons learned toward generating a comprehensive brain
 cell atlas.Neuron 96 , 542–557 (2017). doi:10.1016/
 j.neuron.2017.10.007; pmid: 29096072
- H. Markram, The human brain project.Sci. Am. 306 ,50–55 (2012).
 doi:10.1038/scientificamerican0612-50;pmid: 22649994
- HuBMAP Consortium, The human body at cellular resolution: The
 NIH Human Biomolecular Atlas Program.Nature 574 ,187– 192
 (2019). doi:10.1038/s41586-019-1629-x; pmid: 31597973
- A. Regevet al., The Human Cell Atlas.eLife 6 , e27041 (2017).
 doi:10.7554/eLife.27041; pmid: 29206104
- The HPA Brain Atlas;www.proteinatlas.org/brain.
- GTEx Consortium, Genetic effects on gene expression across
 human tissues.Nature 550 , 204–213 (2017). doi:10.1038/
 nature24277; pmid: 29022597
- S. Noguchiet al., FANTOM5 CAGE profiles of human and
 mouse samples.Sci. Data 4 , 170112 (2017). doi:10.1038/
 sdata.2017.112; pmid: 28850106
- J. E. Coate, J. J. Doyle, Variation in transcriptome size: Are we
 getting the message?Chromosoma 124 ,27–43 (2015).
 doi:10.1007/s00412-014-0496-3; pmid: 25421950
- J. Lovénet al., Revisiting global gene expression analysis.
 Cell 151 , 476–482 (2012). doi:10.1016/j.cell.2012.10.012;
 pmid: 23101621
- M.D. Robinson, A. Oshlack, A scaling normalization method for
 differential expression analysis of RNA-seq data.Genome Biol.
 11 , R25 (2010). doi:10.1186/gb-2010-11-3-r25;pmid: 20196867
- R. A. van den Berg, H. C. Hoefsloot, J. A. Westerhuis,
 A. K. Smilde, M. J. van der Werf, Centering, scaling, and
 transformations: Improving the biological information content
 of metabolomics data.BMC Genomics 7 , 142 (2006).
 doi:10.1186/1471-2164-7-142; pmid: 16762068
- M. E. Ritchieet al.,limmapowers differential expression
 analyses for RNA-sequencing and microarray studies.
 Nucleic Acids Res. 43 , e47 (2015). doi:10.1093/nar/gkv007;
 pmid: 25605792
- J. C. Corvol, J. M. Studler, J. S. Schonn, J. A. Girault, D. Hervé,
 Gaolfis necessary for coupling D1 and A2a receptors to adenylyl
 cyclase in the striatum.J. Neurochem. 76 , 1585–1588 (2001).
 doi:10.1046/j.1471-4159.2001.00201.x; pmid: 11238742
- I. H. Kimet al., Evidence for functional diversity between the
 voltage-gated proton channel Hv1 and its closest related
 protein HVRP1.PLOS ONE 9 , e105926 (2014). doi:10.1371/
 journal.pone.0105926; pmid: 25165868
- N. Zainolabidin, S. P. Kamath, A. R. Thanawalla, A. I. Chen,
 Distinct activities of Tfap2A and Tfap2B in the specification of
 GABAergic interneurons in the developing cerebellum.Front.
 Mol. Neurosci. 10 , 281 (2017). doi:10.3389/fnmol.2017.00281;
 pmid: 28912684
- J. Mulderet al., Secretagogin is a Ca2+-binding protein
 specifying subpopulations of telencephalic neurons.Proc. Natl.
 Acad. Sci. U.S.A. 106 , 22492–22497 (2009). doi:10.1073/
 pnas.0912484106; pmid: 20018755
 29. E. S. Deneris, O. Hobert, Maintenance of postmitotic neuronal
 cell identity.Nat. Neurosci. 17 , 899–907 (2014). doi:10.1038/
 nn.3731; pmid: 24929660
 30. H. Guoet al., Specificity and efficiency of Cre-mediated
 recombination in Emx1-Cre knock-in mice.Biochem. Biophys.
 Res. Commun. 273 , 661–665 (2000). doi:10.1006/
 bbrc.2000.2870; pmid: 10873661
 31. P. S. Joshiet al., Bhlhb5 regulates the postmitotic acquisition
 of area identities in layers II-V of the developing neocortex.
 Neuron 60 , 258–272 (2008). doi:10.1016/
 j.neuron.2008.08.006; pmid: 18957218
 32. D. Jean, G. Bernier, P. Gruss,Six6(Optx2) is a novel murine
 Six3-related homeobox gene that demarcates the presumptive
 pituitary/hypothalamic axis and the ventral optic stalk.Mech.
 Dev. 84 ,31–40 (1999). doi:10.1016/S0925-4773(99)00068-4;
 pmid: 10473118
 33. I. Nunes, L. T. Tovmasian, R. M. Silva, R. E. Burke, S. P. Goff, Pitx3
 is required for development of substantia nigra dopaminergic
 neurons.Proc. Natl. Acad. Sci. U.S.A. 100 ,4245–4250 (2003).
 doi:10.1073/pnas.0230529100; pmid: 12655058
 34. F. Chantoux, J. Francon, Thyroid hormone regulates the
 expression of NeuroD/BHF1 during the development of rat
 cerebellum.Mol. Cell. Endocrinol. 194 , 157–163 (2002).
 doi:10.1016/S0303-7207(02)00133-8; pmid: 12242038
 35. R. Grailheet al., Increased exploratory activity and altered
 response to LSD in mice lacking the 5-HT(5A) receptor.Neuron
 22 , 581–591 (1999). doi:10.1016/S0896-6273(00)80712-6;
 pmid: 10197537
 36. R.Grailhe, G. W. Grabtree, R. Hen, Human 5-HT(5) receptors:
 The 5-HT(5A) receptor is functional but the 5-HT(5B) receptor
 was lost during mammalian evolution.Eur. J. Pharmacol. 418 ,
 157 – 167 (2001). doi:10.1016/S0014-2999(01)00933-5;
 pmid: 11343685
 37. R. L. Smith, H. Baker, K. Kolstad, D. D. Spencer, C. A. Greer,
 Localization of tyrosine hydroxylase and olfactory marker
 protein immunoreactivities in the human and macaque
 olfactory bulb.Brain Res. 548 ,140–148 (1991). doi:10.1016/
 0006-8993(91)91115-H; pmid: 1678294
 38. M. Lebel, Y. Gauthier, A. Moreau, J. Drouin, Pitx3 activates
 mouse tyrosine hydroxylase promoter via a high-affinity
 binding site.J. Neurochem. 77 , 558–567 (2001). doi:10.1046/
 j.1471-4159.2001.00257.x; pmid: 11299318
 39. E. Mezey, Phenylethanolamine N-methyltransferase-containing
 neurons in the limbic system of the young rat.Proc. Natl. Acad.
 Sci. U.S.A. 86 , 347–351 (1989). doi:10.1073/pnas.86.1.347;
 pmid: 2563164
 40. N. Puskás, R. S. Papp, K. Gallatz, M. Palkovits, Interactions
 between orexin-immunoreactive fibers and adrenaline or
 noradrenaline-expressing neurons of the lower brainstem in
 rats and mice.Peptides 31 , 1589–1597 (2010). doi:10.1016/
 j.peptides.2010.04.020; pmid: 20434498
 41. L. C. Daws, G. G. Gould, Ontogeny and regulation of the
 serotonin transporter: Providing insights into human disorders.
 Pharmacol. Ther. 131 ,61–79 (2011). doi:10.1016/
 j.pharmthera.2011.03.013; pmid: 21447358
 42. J. Peng, S. Sarkar, S. L. Chang, Opioid receptor expression in
 human brain and peripheral tissues using absolute quantitative
 real-time RT-PCR.Drug Alcohol Depend. 124 , 223–228 (2012).
 doi:10.1016/j.drugalcdep.2012.01.013; pmid: 22356890
 43. D. L. Kaufmanet al., Characterization of the murinemopioid
 receptor gene.J. Biol. Chem. 270 , 15877–15883 (1995).
 doi:10.1074/jbc.270.26.15877; pmid: 7797593
 44. M.Mortensen, B. Patel, T. G. Smart, GABA potency at GABA(A)
 receptors found in synaptic and extrasynaptic zones.Front.
 Cell. Neurosci. 6 , 1 (2012). pmid: 22319471
 45. X. Gondaet al., A new stress sensor and risk factor for suicide:
 The T allele of the functional genetic variant in the GABRA6
 gene.Sci. Rep. 7 , 12887 (2017). doi:10.1038/s41598-017-
 12776-8; pmid: 29018204
 46. A. S. Hauser, M. M. Attwood, M. Rask-Andersen, H. B. Schiöth,
 D. E. Gloriam, Trends in GPCR drug discovery: New agents,
 targets and indications.Nat. Rev. Drug Discov. 16 , 829– 842
 (2017). doi:10.1038/nrd.2017.178; pmid: 29075003
 47. K. Mizushimaet al., A novel G-protein-coupled receptor gene
 expressed in striatum.Genomics 69 ,314–321 (2000).
 doi:10.1006/geno.2000.6340; pmid: 11056049
 48. D. M. Berson, F. A. Dunn, M. Takao, Phototransduction by retinal
 ganglion cells that set the circadian clock.Science 295 , 1070– 1073
 (2002). doi:10.1126/science.1067262;pmid:11834835
 49.M.N.Moraeset al., Melanopsin, a canonical light receptor,
 mediates thermal activation of clock genes.Sci. Rep. 7 ,
 13977 (2017). doi:10.1038/s41598-017-13939-3;
 pmid: 29070825
 50. M. Uhlenet al., A genome-wide transcriptomic analysis of
 protein-coding genes in human blood cells.Science 366 , eaax9198
 (2019). doi:10.1126/science.aax9198;pmid:31857451
 51. E. Sjöstedtet al., Defining the human brain proteome using
 transcriptomics and antibody-based profiling with a focus on
 the cerebral cortex.PLOS ONE 10 , e0130028 (2015).
 doi:10.1371/journal.pone.0130028; pmid: 26076492
 52. M. W. Vermuntet al., Epigenomic annotation of gene
 regulatory alterations during evolution of the primate brain.
 Nat. Neurosci. 19 , 494–503 (2016). doi:10.1038/nn.4229;
 pmid: 26807951
 53. H. Takahashi, S. Kato, M. Murata, P. Carninci, CAGE (cap
 analysis of gene expression): A protocol for the detection of
 promoter and transcriptional networks.Methods Mol. Biol.
 786 ,181–200 (2012). doi:10.1007/978-1-61779-292-2_11;
 pmid: 21938627
 54. D. R. Zerbinoet al., Ensembl 2018.Nucleic Acids Res. 46 ,
 D754–D761 (2018). doi:10.1093/nar/gkx1098;
 pmid: 29155950
 55. N. L. Bray, H. Pimentel, P. Melsted, L. Pachter, Near-optimal
 probabilistic RNA-seq quantification.Nat. Biotechnol. 34 ,
 525 – 527 (2016). doi:10.1038/nbt.3519; pmid: 27043002
 56. R Core Team, R: A language and environment for statistical
 computing (R Foundation for Statistical Computing, 2018);
 http://www.R-project.org.
 57. C. Spearman, The proof and measurement of association
 between two things. By C. Spearman, 1904.Am. J. Psychol.
 100 , 441–471 (1987). doi:10.2307/1422689; pmid: 3322052
 58. L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An
 Introduction to Cluster analysis(Wiley Series in Probability
 and Statistics, Wiley, 1990).
 59. F. Murtagh, P. Legendre, Ward’s hierarchical agglomerative
 clustering method: Which algorithms implement Ward’s
 criterion?J. Classif. 31 , 274–295 (2014). doi:10.1007/s00357-
 014-9161-z
 60. S. Bhattacharyaet al., ImmPort, toward repurposing of open
 access immunological assay data for translational and
 clinical research.Sci. Data 5 , 180015 (2018). doi:10.1038/
 sdata.2018.15; pmid: 29485622
 61. L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold
 Approximation and Projection for Dimension Reduction.
 arXiv:1802.03426[stat.ML] (9 February 2018).
 62. C. Kampf, I. Olsson, U. Ryberg, E. Sjöstedt, F. Pontén,
 Production of tissue microarrays, immunohistochemistry
 staining and digitalization within the Human Protein Atlas.
 J. Vis. Exp.10.3791/3620 (2012). doi:10.3791/3620;
 pmid: 22688270
 63. J. Mulderet al., Tissue profiling of the mammalian central
 nervous system using human antibody-based proteomics.
 Mol. Cell. Proteomics 8 , 1612–1622 (2009).doi:10.1074/
 mcp.M800539-MCP200; pmid: 19351664
 64. N. Renieret al., Mapping of brain activity by automated volume
 analysis of immediate early genes.Cell 165 , 1789–1802 (2016).
 doi:10.1016/j.cell.2016.05.007; pmid: 27238021
ACKNOWLEDGMENTS
We thank W. Gu from the School of Biotechnology, Southern Medical
University, Guangzhou, for providing the pigs. We acknowledge the
entire staff of the Human Protein Atlas program and the Science for
Life Laboratory for their valuable contributions. Support from the
National Genomics Infrastructure in Stockholm is acknowledged,
with funding from Science for Life Laboratory, the Knut and Alice
Wallenberg Foundation, the Swedish Research Council, and SNIC/
Uppsala Multidisciplinary Center for Advanced Computational
Science for assistance with massively parallel sequencing and access
to the UPPMAX computational infrastructure.Funding:Main
funding was provided by the Knut and Alice Wallenberg Foundation
(WCPR) and the Erling Persson Foundation (KCAP). The pig atlas
part is supported by Sanming Project of Medicine in Shenzhen
(SZSM201612074). L.L. is supported by the Lundbeck Foundation
(R219–2016-1375) and the DFF Sapere Aude Starting grant
(8048-00072A).Author contributions:M.U. and J.M. conceived
of and designed the study. J.H., Y.D., L.L., Z.D., X.L., H.J., and
Y.L. performed pig brain experiments (sample processing, RNA
extraction, quality control, NGS library constructions, sequencing,
and pilot data analysis). W.Z., L.F., M.K., A.M., and C.Z. performed
the bioinformatics analysis. K.v.F. and P.O. provided the infrastructure
for the data. E.S., M.U., W.Z., T.H., and J.M. drafted the manuscript.
All authors discussed the results and contributed to the final
manuscript.Competing interests:T.H. has shares in Lundbeck
and Bioarctic. No other authors declare any competing interests.
Data and materials availability:Materials are available upon
request from J.M. All classification information, data, and geneSjöstedtet al.,Science 367 , eaay5947 (2020) 6 March 2020 15 of 16
RESEARCH | RESEARCH ARTICLE
