Science - 31 January 2020

(Marcin) #1

  1. C. E. Rudd, A. Taylor, H. Schneider, CD28 and CTLA-4
    coreceptor expression and signal transduction.Immunol. Rev.
    229 ,12–26 (2009). doi:10.1111/j.1600-065X.2009.00770.x;
    pmid: 19426212

  2. G. J. Freemanet al., Cloning of B7-2: A CTLA-4 counter-
    receptor that costimulates human T cell proliferation.Science
    262 , 909–911 (1993). doi:10.1126/science.7694363;
    pmid: 7694363

  3. P. S. Linsleyet al., CTLA-4 is a second receptor for the B cell
    activation antigen B7.J. Exp. Med. 174 , 561–569 (1991).
    doi:10.1084/jem.174.3.561; pmid: 1714933

  4. P. S. Linsleyet al., Human B7-1 (CD80) and B7-2 (CD86) bind
    with similar avidities but distinct kinetics to CD28 and CTLA-4
    receptors.Immunity 1 , 793–801 (1994). doi:10.1016/S1074-
    7613(94)80021-9; pmid: 7534620

  5. E. A. Tivolet al., Loss of CTLA-4 leads to massive
    lymphoproliferation and fatal multiorgan tissue destruction,
    revealing a critical negative regulatory role of CTLA-4.
    Immunity 3 , 541–547 (1995). doi:10.1016/1074-7613(95)
    90125-6; pmid: 7584144

  6. P. Waterhouseet al., Lymphoproliferative disorders with early
    lethality in mice deficient in Ctla-4.Science 270 , 985– 988
    (1995). doi:10.1126/science.270.5238.985; pmid: 7481803

  7. G. Q. Phanet al., Cancer regression and autoimmunity induced
    by cytotoxic T lymphocyte-associated antigen 4 blockade in
    patients with metastatic melanoma.Proc. Natl. Acad. Sci. U.S.A.
    100 ,8372–8377 (2003). doi:10.1073/pnas.1533209100;
    pmid: 12826605

  8. H. Nishimuraet al., Autoimmune dilated cardiomyopathy in
    PD-1 receptor-deficient mice.Science 291 , 319–322 (2001).
    doi:10.1126/science.291.5502.319;pmid: 11209085

  9. H. Nishimura, M. Nose, H. Hiai, N. Minato, T. Honjo,
    Development of lupus-like autoimmune diseases by disruption
    of the PD-1 gene encoding an ITIM motif-carrying
    immunoreceptor.Immunity 11 ,141–151 (1999). doi:10.1016/
    S1074-7613(00)80089-8; pmid: 10485649

  10. H. Donget al., B7-H1 determines accumulation and deletion of
    intrahepatic CD8(+) T lymphocytes.Immunity 20 , 327– 336
    (2004). doi:10.1016/S1074-7613(04)00050-0;
    pmid: 15030776

  11. J. M. Taubeet al., Colocalization of inflammatory response with
    B7-h1 expression in human melanocytic lesions supports an
    adaptive resistance mechanism of immune escape.Sci. Transl.
    Med. 4 , 127ra37 (2012). doi:10.1126/scitranslmed.3003689;
    pmid: 22461641

  12. P. C. Tumehet al., PD-1 blockade induces responses by
    inhibiting adaptive immune resistance.Nature 515 , 568– 571
    (2014). doi:10.1038/nature13954; pmid: 25428505

  13. M. L. Brozet al., Dissecting the tumor myeloid compartment
    reveals rare activating antigen-presenting cells critical for
    T cell immunity.Cancer Cell 26 , 638–652 (2014). doi:10.1016/
    j.ccell.2014.09.007; pmid: 25446897

  14. C. S. Garriset al., Successful anti-PD-1 cancer immunotherapy
    requires T cell-dendritic cell crosstalk involving the cytokines
    IFN-gamma and IL-12.Immunity 49 ,1148–1161.e7 (2018).
    doi:10.1016/j.immuni.2018.09.024; pmid: 30552023

  15. K. C. Barryet al., A natural killer-dendritic cell axis defines
    checkpoint therapy-responsive tumor microenvironments.
    Nat. Med. 24 , 1178–1191 (2018). doi:10.1038/s41591-018-
    0085-8; pmid: 29942093

  16. I. Siddiquiet al., Intratumoral Tcf1+PD-1+CD8+T cells with
    stem-like properties promote tumor control in response to
    vaccination and checkpoint blockade immunotherapy.
    Immunity 50 , 195–211.e10 (2019). doi:10.1016/
    j.immuni.2018.12.021; pmid: 30635237

  17. M. V. Goldberget al., Role of PD-1 and its ligand, B7-H1, in
    early fate decisions of CD8 T cells.Blood 110 , 186–192 (2007).
    doi:10.1182/blood-2006-12-062422; pmid: 17392506

  18. F. Tsushimaet al., Interaction between B7-H1 and
    PD-1 determines initiation and reversal of T-cell anergy.
    Blood 110 , 180–185 (2007). doi:10.1182/blood-2006-11-
    060087 ; pmid: 17289811

  19. B. T. Fifeet al., Interactions between PD-1 and PD-L1 promote
    tolerance by blocking the TCR-induced stop signal.
    Nat. Immunol. 10 , 1185–1192 (2009). doi:10.1038/ni.1790;
    pmid: 19783989

  20. K. Staveley-O’Carrollet al., Induction of antigen-specific T cell
    anergy: An early event in the course of tumor progression.
    Proc. Natl. Acad. Sci. U.S.A. 95 , 1178–1183 (1998).
    doi:10.1073/pnas.95.3.1178; pmid: 9448305

  21. E. W. Robertset al., Critical role for CD103(+)/CD141(+)
    dendritic cells bearing CCR7 for tumor antigen trafficking and
    priming of T cell immunity in melanoma.Cancer Cell 30 ,


324 – 336 (2016). doi:10.1016/j.ccell.2016.06.003;
pmid: 27424807


  1. H. Salmonet al., Expansion and activation of CD103(+)
    dendritic cell progenitors at the tumor site enhances tumor
    responses to therapeutic PD-L1 and BRAF inhibition.Immunity
    44 , 924–938 (2016). doi:10.1016/j.immuni.2016.03.012;
    pmid: 27096321

  2. J. Liuet al., Batf3+DCs and type I IFN are critical for the
    efficacy of neoadjuvant cancer immunotherapy.
    OncoImmunology 8 , e1546068 (2018). doi:10.1080/
    2162402X.2018.1546068; pmid: 30713806

  3. M. F. Fransenet al., Tumor-draining lymph nodes are pivotal in
    PD-1/PD-L1 checkpoint therapy.JCI Insight 3 , e124507 (2018).
    doi:10.1172/jci.insight.124507; pmid: 30518694

  4. S. Thangadaet al., Cell-surface residence of sphingosine
    1-phosphate receptor 1 on lymphocytes determines
    lymphocyte egress kinetics.J. Exp. Med. 207 , 1475– 1483
    (2010). doi:10.1084/jem.20091343; pmid: 20584883

  5. K. E. Yostet al., Clonal replacement of tumor-specific T cells
    following PD-1 blockade.Nat. Med. 25 , 1251–1259 (2019).
    doi:10.1038/s41591-019-0522-3; pmid: 31359002

  6. P. M. Fordeet al., Neoadjuvant PD-1 blockade in resectable
    lung cancer.N. Engl. J. Med. 378 , 1976–1986 (2018).
    doi:10.1056/NEJMoa1716078; pmid: 29658848

  7. A. O. Kamphorstet al., Rescue of exhausted CD8 T cells by
    PD-1-targeted therapies is CD28-dependent.Science 355 ,
    1423 – 1427 (2017). doi:10.1126/science.aaf0683;
    pmid: 28280249

  8. A. Memarnejadianet al., PD-1 blockade promotes epitope
    spreading in anticancer CD8+T cell responses by preventing
    fratricidal death of subdominant clones to relieve
    immunodomination.J. Immunol. 199 , 3348–3359 (2017).
    doi:10.4049/jimmunol.1700643; pmid: 28939757

  9. J. Zhanget al., Compartmental analysis of T cell clonal
    dynamics as a function of pathologic response to neoadjuvant
    PD-1 blockade in resectable non-small cell lung cancer.
    Clin. Cancer Res.clincanres.2931.2019; Epub ahead of print
    (2019). doi:10.1158/1078-0432.CCR-19-2931; pmid: 31754049

  10. R. N. Amariaet al., Neoadjuvant immune checkpoint blockade
    in high-risk resectable melanoma.Nat. Med. 24 , 1649– 1654
    (2018). doi:10.1038/s41591-018-0197-1; pmid: 30297909

  11. C. U. Blanket al., Neoadjuvant versus adjuvant ipilimumab plus
    nivolumab in macroscopic stage III melanoma.Nat. Med. 24 ,
    1655 – 1661 (2018). doi:10.1038/s41591-018-0198-0;
    pmid: 30297911

  12. A. C. Huanget al., A single dose of neoadjuvant PD-1 blockade
    predicts clinical outcomes in resectable melanoma.Nat. Med.
    25 , 454–461 (2019). doi:10.1038/s41591-019-0357-y;
    pmid: 30804515

  13. E. A. Rozemanet al., Identification of the optimal combination
    dosing schedule of neoadjuvant ipilimumab plus nivolumab in
    macroscopic stage III melanoma (OpACIN-neo): A multicentre,
    phase 2, randomised, controlled trial.Lancet Oncol. 20 ,
    948 – 960 (2019). doi:10.1016/S1470-2045(19)30151-2;
    pmid: 31160251

  14. J. Larkinet al., Combined nivolumab and ipilimumab or
    monotherapy in untreated melanoma.N. Engl. J. Med. 373 ,
    23 – 34 (2015). doi:10.1056/NEJMoa1504030; pmid: 26027431

  15. A. Necchiet al., Pembrolizumab as neoadjuvant therapy before
    radical cystectomy in patients with muscle-invasive urothelial
    bladder carcinoma (PURE-01): An open-label, single-arm,
    phase II study.J. Clin. Oncol. 36 , 3353–3360 (2018).
    doi: 10 .1200/JCO.18.01148; pmid:^30343614

  16. T. F. Cloughesyet al., Neoadjuvant anti-PD-1 immunotherapy
    promotes a survival benefit with intratumoral and systemic
    immune responses in recurrent glioblastoma.Nat. Med. 25 ,
    477 – 486 (2019). doi:10.1038/s41591-018-0337-7;
    pmid: 30742122

  17. K. A. Schalperet al., Neoadjuvant nivolumab modifies the
    tumor immune microenvironment in resectable glioblastoma.
    Nat. Med. 25 ,470–476 (2019). doi:10.1038/s41591-018-0339-5;
    pmid: 30742120

  18. R. N. Amariaet al., Neoadjuvant systemic therapy in
    melanoma: Recommendations of the International Neoadjuvant
    Melanoma Consortium.Lancet Oncol. 20 , e378–e389 (2019).
    doi:10.1016/S1470-2045(19)30332-8; pmid: 31267972

  19. F. Petrelliet al., Correlation of pathologic complete response
    with survival after neoadjuvant chemotherapy in bladder
    cancer treated with cystectomy: A meta-analysis.Eur. Urol. 65 ,
    350 – 357 (2014). doi:10.1016/j.eururo.2013.06.049;
    pmid: 23849998

  20. Z. Liet al., Correlation of pathological complete response with
    survival after neoadjuvant chemotherapy in gastric or


gastroesophageal junction cancer treated with radical surgery:
A meta-analysis.PLOS ONE 13 , e0189294 (2018). doi:10.1371/
journal.pone.0189294; pmid: 29370182


  1. L. Springet al., Pathologic complete response after
    neoadjuvant chemotherapy and long-term outcomes among
    young women with breast cancer.J. Natl. Compr. Canc. Netw.
    15 , 1216–1223 (2017). doi:10.6004/jnccn.2017.0158;
    pmid: 28982747

  2. G. Mouilletet al., Pathologic complete response to
    preoperative chemotherapy predicts cure in early-stage
    non-small-cell lung cancer: Combined analysis of two IFCT
    randomized trials.J. Thorac. Oncol. 7 , 841–849 (2012).
    doi:10.1097/JTO.0b013e31824c7d92; pmid: 22722786
    62.M. D. Hellmannet al., Pathological response after neoadjuvant
    chemotherapy in resectable non-small-cell lung cancers:
    Proposal for the use of major pathological response as a
    surrogate endpoint.Lancet Oncol. 15 , e42–e50 (2014).
    doi:10.1016/S1470-2045(13)70334-6; pmid: 24384493

  3. W. F. Symmanset al., Measurement of residual breast cancer
    burden to predict survival after neoadjuvant chemotherapy.
    J. Clin. Oncol. 25 , 4414–4422 (2007). doi:10.1200/
    JCO.2007.10.6823; pmid: 17785706

  4. M. T. Tetzlaffet al., Pathological assessment of resection
    specimens after neoadjuvant therapy for metastatic
    melanoma.Ann. Oncol. 29 , 1861–1868 (2018). doi:10.1093/
    annonc/mdy226; pmid: 29945191

  5. Y. Quet al., Pathologic assessment after neoadjuvant
    chemotherapy for NSCLC: Importance and implications of
    distinguishing adenocarcinoma from squamous cell carcinoma.
    J. Thorac. Oncol. 14 , 482–493 (2019). doi:10.1016/
    j.jtho.2018.11.017; pmid: 30503889

  6. T. R. Cottrellet al., Pathologic features of response to
    neoadjuvant anti-PD-1 in resected non-small-cell lung
    carcinoma: A proposal for quantitative immune-related
    pathologic response criteria (irPRC).Ann. Oncol. 29 ,
    1853 – 1860 (2018). doi:10.1093/annonc/mdy218;
    pmid: 29982279

  7. J. E. Steinet al., Pan-tumor pathologic scoring of response to
    PD-(L)1 blockade.Clin. Cancer Res.10.1158/1078-0432.CCR-
    19-2379 (2019). doi:10.1158/1078-0432.CCR-19-2379;
    pmid: 31672770

  8. S. L. Topalianet al., Nivolumab (Nivo) as neoadjuvant therapy
    in patients with resectable Merkel cell carcinoma (MCC) in
    CheckMate 358.J. Clin. Oncol. 36 , 9505–9505 (2018).
    doi:10.1200/JCO.2018.36.15_suppl.9505

  9. C. Sautès-Fridman, F. Petitprez, J. Calderaro, W. H. Fridman,
    Tertiary lymphoid structures in the era of cancer
    immunotherapy.Nat. Rev. Cancer 19 , 307–325 (2019).
    doi: 10 .1038/s41568-019-0144-6; pmid: 31092904

  10. T. Okazaki, A. Maeda, H. Nishimura, T. Kurosaki, T. Honjo,
    PD-1 immunoreceptor inhibits B cell receptor-mediated
    signaling by recruiting src homology 2-domain-containing
    tyrosine phosphatase 2 to phosphotyrosine.Proc. Natl. Acad.
    Sci. U.S.A. 98 , 13866–13871 (2001). doi:10.1073/
    pnas.231486598; pmid: 11698646

  11. W. Damskyet al., B cell depletion or absence does not impede
    anti-tumor activity of PD-1 inhibitors.J. Immunother. Cancer 7 ,
    153 (2019). doi:10.1186/s40425-019-0613-1; pmid: 31200747

  12. J. Grisset al., B cells sustain inflammation and predict
    response to immune checkpoint blockade in human melanoma.
    Nat. Commun. 10 , 4186 (2019). doi:10.1038/s41467-019-
    12160-2; pmid: 31519915

  13. J. E. Steinet al., Major pathologic response on biopsy (MPRbx)
    in patients with advanced melanoma treated with anti-PD-1:
    Evidence for an early, on-therapy biomarker of response.
    Ann. Oncol. 30 , 589–596 (2019). doi:10.1093/annonc/
    mdz019; pmid: 30689736

  14. E. Z. Keung, E. U. Ukponmwan, A. P. Cogdill, J. A. Wargo, The
    rationale and emerging use of neoadjuvant immune checkpoint
    blockade for solid malignancies.Ann. Surg. Oncol. 25 ,
    1814 – 1827 (2018). doi:10.1245/s10434-018-6379-8;
    pmid: 29500764

  15. J. S. O’Donnell, E. P. Hoefsmit, M. J. Smyth, C. U. Blank,
    M. W. L. Teng, The promise of neoadjuvant immunotherapy
    and surgery for cancer treatment.Clin. Cancer Res. 25 ,
    5743 – 5751 (2019). doi:10.1158/1078-0432.CCR-18-2641;
    pmid: 31040150

  16. R. Nandaet al., Pembrolizumab plus standard neoadjuvant
    therapy for high-risk breast cancer (BC): Results from I-SPY 2.
    J. Clin. Oncol. 35 , 506–506 (2017). doi:10.1200/
    JCO.2017.35.15_suppl.506

  17. P. Schmidet al., KEYNOTE-522: Phase III study of
    pembrolizumab (pembro) + chemotherapy (chemo) vs placebo


Topalianet al.,Science 367 , eaax0182 (2020) 31 January 2020 8of9


RESEARCH | REVIEW

Free download pdf