Science - 31 January 2020

(Marcin) #1

  1. T. E. Graberet al., Reactivation of stalled polyribosomes in
    synaptic plasticity.Proc. Natl. Acad. Sci. U.S.A. 110 ,
    16205 – 16210 (2013). doi:10.1073/pnas.1307747110;
    pmid: 24043809

  2. N. T. Ingolia, L. F. Lareau, J. S. Weissman, Ribosome profiling
    of mouse embryonic stem cells reveals the complexity and
    dynamics of mammalian proteomes.Cell 147 , 789– 802
    (2011). doi:10.1016/j.cell.2011.10.002; pmid: 22056041

  3. A. Dana, T. Tuller, The effect of tRNA levels on decoding
    times of mRNA codons.Nucleic Acids Res. 42 , 9171– 9181
    (2014). doi:10.1093/nar/gku646; pmid: 25056313

  4. E. E. Heyer, M. J. Moore, Redefining the Translational Status
    of 80S Monosomes.Cell 164 , 757–769 (2016). doi:10.1016/
    j.cell.2016.01.003; pmid: 26871635

  5. D. Balchin, M. Hayer-Hartl, F. U. Hartl, In vivo aspects of
    protein folding and quality control.Science 353 , aac4354
    (2016). doi:10.1126/science.aac4354; pmid: 27365453

  6. J. Zhao, B. Qin, R. Nikolay, C. M. T. Spahn, G. Zhang,
    Translatomics: The Global View of Translation.Int. J. Mol. Sci.
    20 , 212 (2019). pmid: 30626072

  7. F. Koopmanset al., SynGO: An Evidence-Based, Expert-
    Curated Knowledge Base for the Synapse.Neuron 103 ,
    217 – 234.e4 (2019). doi:10.1016/j.neuron.2019.05.002;
    pmid: 31171447

  8. R. P. Tas, L. C. Kapitein, Exploring cytoskeletal diversity in
    neurons.Science 361 , 231–232 (2018). doi:10.1126/science.
    aat5992; pmid: 30026215

  9. A. J. Silva, C. F. Stevens, S. Tonegawa, Y. Wang, Deficient
    hippocampal long-term potentiation in alpha-calcium-
    calmodulin kinase II mutant mice.Science 257 , 201– 206
    (1992). doi:10.1126/science.1378648; pmid: 1378648

  10. G. L. Lyfordet al., Arc, a growth factor and activity-regulated
    gene,encodes a novel cytoskeleton-associated protein that
    is enriched in neuronal dendrites.Neuron 14 , 433– 445
    (1995). doi:10.1016/0896-6273(95)90299-6; pmid: 7857651

  11. T. Bacaj, M. Ahmad, S. Jurado, R. C. Malenka, T. C. Südhof,
    Synaptic Function of Rab11Fip5: Selective Requirement for
    Hippocampal Long-Term Depression.J. Neurosci. 35 ,
    7460 – 7474 (2015). doi:10.1523/JNEUROSCI.1581-14.2015;
    pmid: 25972173

  12. P. B. Allen, A. T. Greenfield, P. Svenningsson, D. C. Haspeslagh,
    P. Greengard, Phactrs 1-4: A family of protein phosphatase
    1 and actin regulatory proteins.Proc. Natl. Acad. Sci. U.S.A.
    101 ,7187–7192 (2004). doi:10.1073/pnas.0401673101;
    pmid: 15107502

  13. H. Wanget al., Norbin is an endogenous regulator of
    metabotropic glutamate receptor 5 signaling.Science 326 ,
    1554 – 1557 (2009). doi:10.1126/science.1178496;
    pmid: 20007903

  14. B. Tewset al., Synthetic microRNA-mediated downregulation
    of Nogo-A in transgenic rats reveals its role as regulator of
    synaptic plasticity and cognitive function.Proc. Natl. Acad.
    Sci. U.S.A. 110 , 6583–6588 (2013). doi:10.1073/
    pnas.1217665110; pmid: 23576723

  15. Y. Fan, X. Tang, E. Vitriol, G. Chen, J. Q. Zheng, Actin capping
    protein is required for dendritic spine development and
    synapse formation.J. Neurosci. 31 , 10228–10233 (2011).
    doi:10.1523/JNEUROSCI.0115-11.2011; pmid: 21752999

  16. G. G. Farías, C. M. Guardia, R. De Pace, D. J. Britt,
    J. S. Bonifacino, BORC/kinesin-1 ensemble drives polarized
    transport of lysosomes into the axon.Proc.Natl.Acad.Sci.U.S.A.
    114 , E2955–E2964 (2017). doi:10.1073/pnas.1616363114;
    pmid: 28320970

  17. I. H. Kim, H. Wang, S. H. Soderling, R. Yasuda, Loss of Cdc42
    leads to defects in synaptic plasticity and remote memory
    recall.eLife 3 , e02839 (2014). doi:10.7554/eLife.02839;
    pmid: 25006034

  18. P. W. Beesley, R. Herrera-Molina, K. H. Smalla, C. Seidenbecher,
    The Neuroplastin adhesion molecules: Key regulators of
    neuronal plasticity and synaptic function.J. Neurochem. 131 ,
    268 – 283 (2014). doi:10.1111/jnc.12816;pmid: 25040546

  19. M. S. Lowenthal, S. P. Markey, A. Dosemeci, Quantitative
    mass spectrometry measurements reveal stoichiometry of
    principal postsynaptic density proteins.J. Proteome Res. 14 ,
    2528 – 2538 (2015). doi:10.1021/acs.jproteome.5b00109;
    pmid: 25874902

  20. B. G. Wilhelmet al., Composition of isolated synaptic
    boutons reveals the amounts of vesicle trafficking proteins.
    Science 344 , 1023–1028 (2014). doi:10.1126/
    science.1252884; pmid: 24876496

  21. N. Nagarajet al., Deep proteome and transcriptome mapping
    of a human cancer cell line.Mol. Syst. Biol. 7 , 548 (2011).
    doi:10.1038/msb.2011.81; pmid: 22068331
    45. K. M. Harris, R. J. Weinberg, Ultrastructure of synapses in the
    mammalian brain.Cold Spring Harb. Perspect. Biol. 4 ,
    a005587 (2012). doi:10.1101/cshperspect.a005587;
    pmid: 22357909
    46. K. S. Kosik, Life at Low Copy Number: How Dendrites
    Manage with So Few mRNAs.Neuron 92 , 1168– 1180
    (2016). doi:10.1016/j.neuron.2016.11.002; pmid: 28009273
    47. T. Shigeokaet al., Dynamic Axonal Translation in
    Developing and Mature Visual Circuits.Cell 166 , 181– 192
    (2016). doi:10.1016/j.cell.2016.05.029; pmid: 27321671
    48. T. J. Yountset al., Presynaptic Protein Synthesis Is Required
    for Long-Term Plasticity of GABA Release.Neuron 92 ,
    479 – 492 (2016). doi:10.1016/j.neuron.2016.09.040;
    pmid: 27764673
    49. J. N. Bourne, K. E. Sorra, J. Hurlburt, K. M. Harris,
    Polyribosomes are increased in spines of CA1 dendrites
    2 h after the induction of LTP in mature rat hippocampal
    slices.Hippocampus 17 ,1–4 (2007). doi: 10 .1002/
    hipo.20238; pmid: 17094086
    50. V. Tatavartyet al., Single-molecule imaging of translational
    output from individual RNA granules in neurons.Mol. Biol. Cell
    23 , 918–929 (2012). doi:10.1091/mbc.e11-07-0622;
    pmid: 22219377
    51. K. M. Harris, J. K. Stevens, Dendritic spines of CA 1 pyramidal
    cells in the rat hippocampus: Serial electron microscopy
    with reference to their biophysical characteristics.J. Neurosci.
    9 ,2982–2997 (1989). doi:10.1523/JNEUROSCI.09-08-
    02982.1989;pmid:2769375
    52. L. E. Ostroffet al., Accumulation of Polyribosomes in
    Dendritic Spine Heads, But Not Bases and Necks, during
    Memory Consolidation Depends on Cap-Dependent
    Translation Initiation.J. Neurosci. 37 , 1862–1872 (2017).
    doi:10.1523/JNEUROSCI.3301-16.2017; pmid: 28087764
    53. C. Wang, B. Han, R. Zhou, X. Zhuang, Real-Time Imaging of
    Translation on Single mRNA Transcripts in Live Cells.
    Cell 165 , 990–1001 (2016). doi:10.1016/j.cell.2016.04.040;
    pmid: 27153499
    54. M. Sheng, E. Kim, The postsynaptic organization of synapses.
    Cold Spring Harb. Perspect. Biol. 3 , a005678 (2011).
    doi:10.1101/cshperspect.a005678; pmid: 22046028
    55. D. Panjaet al., Two-stage translational control of dentate
    gyrus LTP consolidation is mediated by sustained BDNF-TrkB
    signaling to MNK.Cell Rep. 9 , 1430–1445 (2014).
    doi:10.1016/j.celrep.2014.10.016; pmid: 25453757
    56. G. M. Schratt, E. A. Nigh, W. G. Chen, L. Hu, M. E. Greenberg,
    BDNF regulates the translation of a select group of
    mRNAs by a mammalian target of rapamycin-
    phosphatidylinositol 3-kinase-dependent pathway during
    neuronal development.J. Neurosci. 24 , 7366–7377 (2004).
    doi:10.1523/JNEUROSCI.1739-04.2004; pmid: 15317862
    57. W. S. Sossin, M. Costa-Mattioli, Translational Control in the
    Brain in Health and Disease.Cold Spring Harb. Perspect. Biol.
    11 , a032912 (2018). pmid: 30082469
    58. L. Ciandrini, I. Stansfield, M. C. Romano, Ribosome traffic
    on mRNAs maps to gene ontology: Genome-wide
    quantification of translation initiation rates and polysome
    size regulation.PLOS Comput. Biol. 9 , e1002866(2013).
    doi:10.1371/journal.pcbi.1002866; pmid: 23382661
    59. L. D. Fernandes, A. P. S. Moura, L. Ciandrini, Gene length as a
    regulator for ribosome recruitment and protein synthesis:
    Theoretical insights.Sci. Rep. 7 , 17409 (2017). doi:10.1038/
    s41598-017-17618-1; pmid: 29234048
    60. M. K. Thompson, W. V. Gilbert, mRNA length-sensing in
    eukaryotic translation: Reconsidering the“closed loop”and
    its implications for translational control.Curr. Genet. 63 ,
    613 – 620 (2017). doi:10.1007/s00294-016-0674-3;
    pmid: 28028558
    61. D. E. Weinberget al., Improved Ribosome-Footprint
    and mRNA Measurements Provide Insights into
    Dynamics and Regulation of Yeast Translation.Cell Rep.
    14 , 1787–1799 (2016). doi:10.1016/j.celrep.2016.01.043;
    pmid: 26876183
    62. K. Leppek, R. Das, M. Barna, Functional 5′UTR mRNA
    structures in eukaryotic translation regulation and how to
    find them.Nat. Rev. Mol. Cell Biol. 19 , 158–174 (2018).
    doi:10.1038/nrm.2017.103; pmid: 29165424
    63. C. Mayr, Regulation by 3′-Untranslated Regions.Annu.Rev.Genet.
    51 ,171–194 (2017). doi:10.1146/annurev-genet-120116-
    024704 ; pmid: 28853924
    64. C. E. Holt, K. C. Martin, E. M. Schuman, Local translation
    in neurons: Visualization and function.Nat. Struct. Mol. Biol.
    26 , 557–566 (2019). doi:10.1038/s41594-019-0263-5;
    pmid: 31270476
    65. C. Giorgiet al., The EJC factor eIF4AIII modulates synaptic
    strength and neuronal protein expression.Cell 130 , 179– 191
    (2007). doi:10.1016/j.cell.2007.05.028; pmid: 17632064
    66. J. C. Darnell, J. D. Richter, Cytoplasmic RNA-binding proteins
    and the control of complex brain function.Cold Spring Harb.
    Perspect. Biol. 4 , a012344(2012). doi:10.1101/cshperspect.
    a012344; pmid: 22723494
    67. A. Zappuloet al., RNA localization is a key determinant of
    neurite-enriched proteome.Nat. Commun. 8 , 583 (2017).
    doi:10.1038/s41467-017-00690-6; pmid: 28928394
    68. S. Sambandanet al., Activity-dependent spatially localized
    miRNA maturation in neuronal dendrites.Science
    355 , 634–637 (2017). doi:10.1126/science.aaf8995;
    pmid: 28183980
    69. K. T. Thomas, C. Gross, G. J. Bassell, microRNAs
    Sculpt Neuronal Communication in a Tight Balance
    That Is Lost in Neurological Disease.Front. Mol. Neurosci.
    11 , 455 (2018). doi:10.3389/fnmol.2018.00455;
    pmid: 30618607
    70. N. R. Genuth, M. Barna, The Discovery of Ribosome
    Heterogeneity and Its Implications for Gene Regulation
    and Organismal Life.Mol. Cell 71 , 364–374 (2018).
    doi:10.1016/j.molcel.2018.07.018; pmid: 30075139
    71. J. C. Darnellet al., FMRP stalls ribosomal translocation
    on mRNAs linked to synaptic function and autism.
    Cell 146 , 247–261 (2011). doi:10.1016/j.cell.2011.06.013;
    pmid: 21784246
    72. R. S. Muddashettyet al., Reversible inhibition of PSD-95
    mRNA translation by miR-125a, FMRP phosphorylation,
    and mGluR signaling.Mol. Cell 42 , 673–688 (2011).
    doi:10.1016/j.molcel.2011.05.006; pmid: 21658607
    73. G. Aakalu, W. B. Smith, N. Nguyen, C. Jiang, E. M. Schuman,
    Dynamic visualization of local protein synthesis in
    hippocampal neurons.Neuron 30 , 489–502 (2001).
    doi:10.1016/S0896-6273(01)00295-1; pmid: 11395009
    74. E. Puighermanalet al., Anatomical and molecular
    characterization of dopamine D1 receptor-expressing neurons
    of the mouse CA1 dorsal hippocampus.Brain Struct. Funct.
    222 , 1897–1911 (2017). doi:10.1007/s00429-016-1314-x;
    pmid: 27678395
    75. W.P. Lou, A. Baser, S. Klußmann, A. Martin-Villalba, In vivo
    interrogation of central nervous system translatome by
    polyribosome fractionation.J. Vis. Exp. 2014 , e51255 (2014).
    doi:10.3791/51255; pmid: 24835574
    76. N. J. McGlincy, N. T. Ingolia, Transcriptome-wide measurement
    of translation by ribosome profiling.Methods 126 , 112– 129
    (2017). doi:10.1016/j.ymeth.2017.05.028; pmid: 28579404
    77. N. T. Ingolia, G. A. Brar, S. Rouskin, A. M. McGeachy,
    J. S. Weissman, The ribosome profiling strategy for
    monitoring translation in vivo by deep sequencing of
    ribosome-protected mRNA fragments.Nat. Protoc. 7 ,
    1534 – 1550 (2012). doi:10.1038/nprot.2012.086;
    pmid: 22836135
    78. J. R. Wiśniewski, A. Zougman, N. Nagaraj, M. Mann,
    Universal sample preparation method for proteome
    analysis.Nat. Methods 6 , 359–362 (2009). doi:10.1038/
    nmeth.1322; pmid: 19377485
    79. E. Abset al., Learning-Related Plasticity in Dendrite-Targeting
    Layer 1 Interneurons.Neuron 100 , 684–699.e6 (2018).
    doi:10.1016/j.neuron.2018.09.001; pmid: 30269988
    80. A. Bieveret al., PKA-dependent phosphorylation of ribosomal
    protein S6 does not correlate with translation efficiency in
    striatonigral and striatopallidal medium-sized spiny neurons.
    J. Neurosci. 35 , 4113–4130 (2015). doi:10.1523/
    JNEUROSCI.3288-14.2015; pmid: 25762659
    81. A. E. Power, D. J. Berlau, J. L. McGaugh, O. Steward,
    Anisomycin infused into the hippocampus fails to block
    “reconsolidation”but impairs extinction: The role of
    re-exposure duration.Learn. Mem. 13 ,27–34 (2006).
    doi:10.1101/lm.91206; pmid: 16452651
    82. J. Remaudet al., Anisomycin injection in area CA3 of the
    hippocampus impairs both short-term and long-term
    memories of contextual fear.Learn. Mem. 21 , 311–315 (2014).
    doi: 10 .1101/lm.033969.113; pmid: 25171422
    83. J. Cox, M. Mann, MaxQuant enables high peptide
    identification rates, individualized p.p.b.-range mass
    accuracies and proteome-wide protein quantification.
    Nat. Biotechnol. 26 , 1367–1372 (2008). doi:10.1038/
    nbt.1511; pmid: 19029910
    84. S. Tyanovaet al., The Perseus computational platform
    for comprehensive analysis of (prote)omics data.
    Nat. Methods 13 , 731–740 (2016). doi:10.1038/nmeth.3901;
    pmid: 27348712


Bieveret al.,Science 367 , eaay4991 (2020) 31 January 2020 13 of 14


RESEARCH | RESEARCH ARTICLE

Free download pdf