Science - 31 January 2020

(Marcin) #1

  1. M. Martin, Cutadapt removes adapter sequences from
    high-throughput sequencing reads.EMBnet.journal 17 ,10– 12
    (2011). doi:10.14806/ej.17.1.200

  2. B. Langmead, S. L. Salzberg, Fast gapped-read
    alignment with Bowtie 2.Nat. Methods 9 , 357–359 (2012).
    doi:10.1038/nmeth.1923; pmid: 22388286

  3. A. Dobinet al., STAR: Ultrafast universal RNA-seq aligner.
    Bioinformatics 29 ,15–21 (2013). doi:10.1093/
    bioinformatics/bts635; pmid: 23104886

  4. D. Karolchiket al., The UCSC Table Browser data
    retrieval tool.Nucleic Acids Res. 32 , D493–D496 (2004).
    doi:10.1093/nar/gkh103; pmid: 14681465

  5. A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of
    utilities for comparing genomic features.Bioinformatics 26 ,
    841 – 842 (2010). doi:10.1093/bioinformatics/btq033;
    pmid: 20110278

  6. Y. Liao, G. K. Smyth, W. Shi, featureCounts: An efficient
    general purpose program for assigning sequence reads to
    genomic features.Bioinformatics 30 , 923–930 (2014).
    doi:10.1093/bioinformatics/btt656; pmid: 24227677

  7. J. M. Rodriguezet al., APPRIS 2017: Principal isoforms for
    multiple gene sets.Nucleic Acids Res. 46 , D213–D217
    (2018). doi:10.1093/nar/gkx997; pmid: 29069475

  8. A. Zhu, J. G. Ibrahim, M. I. Love, Heavy-tailed prior
    distributions for sequence count data: Removing the noise
    and preserving large differences.Bioinformatics 35 ,
    2084 – 2092 (2019). doi:10.1093/bioinformatics/bty895;
    pmid: 30395178

  9. J. Cox, M. Mann, 1D and 2D annotation enrichment:
    A statistical method integrating quantitative proteomics
    with complementary high-throughput data.
    BMC Bioinformatics 13 (Suppl. 16), S12 (2012).
    doi:10.1186/1471-2105-13-S16-S12;pmid: 23176165

  10. W. J. Kentet al., The human genome browser at UCSC.
    Genome Res. 12 , 996–1006 (2002). doi:10.1101/gr.229102;
    pmid: 12045153

  11. G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler:
    An R package for comparing biological themes among gene


clusters.OMICS 16 , 284–287 (2012). doi:10.1089/
omi.2011.0118; pmid: 22455463


  1. R. Lorenzet al., ViennaRNA Package 2.0.Algorithms
    Mol. Biol. 6 , 26 (2011). doi:10.1186/1748-7188-6-26;
    pmid: 22115189

  2. E. Trotta, On the normalization of the minimum free energy
    of RNAs by sequence length.PLOS ONE 9 , e113380
    (2014). doi:10.1371/journal.pone.0113380; pmid: 25405875

  3. R. Jansen, H. J. Bussemaker, M. Gerstein, Revisiting the
    codon adaptation index from a whole-genome perspective:
    Analyzing the relationship between gene expression and
    codon occurrence in yeast using a variety of models.
    Nucleic Acids Res. 31 , 2242–2251 (2003). doi:10.1093/nar/
    gkg306; pmid: 12682375

  4. A.K.Sharmaet al., A chemical kinetic basis for
    measuring translation initiation and elongation rates
    from ribosome profiling data.PLOS Comput. Biol. 15 ,
    e1007070 (2019). doi:10.1371/journal.pcbi.1007070;
    pmid: 31120880

  5. M. Torrisi, M. Kaleel, G. Pollastri, Deeper Profiles and
    Cascaded Recurrent and Convolutional Neural Networks for
    state-of-the-art Protein Secondary Structure Prediction.
    Sci. Rep. 9 , 12374 (2019). doi:10.1038/s41598-019-48786-x;
    pmid: 31451723

  6. P. Joneset al., InterProScan 5: Genome-scale protein
    function classification.Bioinformatics 30 , 1236–1240 (2014).
    doi:10.1093/bioinformatics/btu031; pmid: 24451626

  7. J. A. Vizcaínoet al., 2016 update of the PRIDE database
    and its related tools.Nucleic Acids Res. 44 , D447–D456
    (2016).doi:10.1093/nar/gkv1145; pmid: 26527722

  8. schumanlab, schumanlab/ribotools: ribotools_monosomes,
    version v1.0, Zenodo (2019). doi:10.5281/zenodo.3579508


ACKNOWLEDGMENTS
We thank D. Vogel for assistance with the preparation of cultured
neurons; M. Heumüller and J. J. Letzkus for assistance with the
intracerebroventricular injections; I. Wüllenweber and F. Rupprecht
for assistance with the proteomics analysis; N. T. Ingolia and

M. J. McGlincy (Department of Molecular and Cellular Biology,
University of California, Berkeley) for advice on bioinformatic
analysis of footprint libraries; and E. Valjent (IGF, CNRS, INSERM,
University of Montpellier) for providing the Wfs1Cre transgenic
mice.Funding:A.B. is supported by an EMBO long-term
postdoctoral fellowship (EMBO ALTF 331-2017). E.M.S. is funded
by the Max Planck Society, an Advanced Investigator award
from the European Research Council (grant 743216), DFG CRC
1080: Molecular and Cellular Mechanisms of Neural Homeostasis,
and DFG CRC 902: Molecular Principles of RNA-based Regulation.
Author contributions:A.B. and C.G. designed and conducted
experiments and analyzed results. G.T. analyzed results. E.C. and
T.D. conducted experiments. J.D.L. acquired the proteomics
data. E.M.S. designed experiments and supervised the project. A.B.
and E.M.S. wrote the manuscript, and all authors edited the
manuscript.Competing interests:The authors declare no
competing interests.Data and material availability:All data are
available in the main text or the supplementary materials. The
accession number for the raw sequencing data reported in
this paper is NCBI BioProject: PRJNA550323. The mass
spectrometry proteomics data are deposited at the ProteomeXchange
Consortium via PRIDE ( 102 ) partner repository with the dataset
identifier PXD016552. All bioinformatic tools used in this study are
contained in one modular C++ program called RiboTools. The
source code and further notes on the algorithms can be found on
our GitHub repository ( 103 ). Other analysis scripts and codes
are available upon request.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6477/eaay4991/suppl/DC1
Figs. S1 to S15
Table S1
View/request a protocol for this paper fromBio-protocol.

24 June 2019; resubmitted 29 October 2019
Accepted 18 December 2019
10.1126/science.aay4991

Bieveret al.,Science 367 , eaay4991 (2020) 31 January 2020 14 of 14


RESEARCH | RESEARCH ARTICLE

Free download pdf