Science - 31 January 2020

(Marcin) #1

Upon identification of PB or stress granule
fission during postimaging analysis, a seg-
mented line was drawn perpendicular to the
PB or stress granule fission site through the
length of the PB or stress granule. The fluo-
rescence intensities of ER and PB or stress
granule channels were measured along the
length of the line for each time point and
plotted. ER-marked fission events were iden-
tified by acute decreases in PB or stress gran-
ule marker fluorescence that coincided with
mCh-KDEL (ER) fluorescence peaks.


REFERENCES AND NOTES



  1. L. A. Staehelin, The plant ER: A dynamic organelle composed
    of a large number of discrete functional domains.Plant J. 11 ,
    1151 – 1165 (1997). doi:10.1046/j.1365-313X.1997.11061151.x;
    pmid: 9225461

  2. H. Wu, P. Carvalho, G. K. Voeltz, Here, there, and everywhere: The
    importance of ER membrane contact sites.Science 361 ,
    eaan5835 (2018). doi:10.1126/science.aan5835;pmid:30072511

  3. J. E. Vance, Phospholipid synthesis in a membrane fraction
    associated with mitochondria.J. Biol. Chem. 265 , 7248– 7256
    (1990). pmid: 2332429

  4. R. Rizzutoet al., Close contacts with the endoplasmic
    reticulum as determinants of mitochondrial Ca2+responses.
    Science 280 , 1763–1766 (1998). doi:10.1126/
    science.280.5370.1763; pmid: 9624056

  5. B. Kornmannet al., An ER-mitochondria tethering complex
    revealed by a synthetic biology screen.Science 325 , 477– 481
    (2009). doi:10.1126/science.1175088; pmid: 19556461

  6. B. Mesminet al., A four-step cycle driven by PI(4)P hydrolysis
    directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP.
    Cell 155 , 830–843 (2013). doi:10.1016/j.cell.2013.09.056;
    pmid: 24209621

  7. R. Huaet al., VAPs and ACBD5 tether peroxisomes to the ER
    for peroxisome maintenance and lipid homeostasis.J. Cell Biol.
    216 , 367–377 (2017). doi:10.1083/jcb.201608128;
    pmid: 28108526

  8. N. Rochaet al., Cholesterol sensor ORP1L contacts the ER
    protein VAP to control Rab7-RILP-p150Gluedand late endosome
    positioning.J. Cell Biol. 185 , 1209–1225 (2009). doi:10.1083/
    jcb.200811005; pmid: 19564404

  9. J. R. Friedman, J. R. Dibenedetto, M. West, A. A. Rowland,
    G. K. Voeltz, Endoplasmic reticulum-endosome contact
    increases as endosomes traffic and mature.Mol. Biol. Cell 24 ,
    1030 – 1040 (2013). doi:10.1091/mbc.e12-10-0733;
    pmid: 23389631

  10. A. L. Zajac, Y. E. Goldman, E. L. F. Holzbaur, E. M. Ostap, Local
    cytoskeletal and organelle interactions impact molecular-
    motor- driven early endosomal trafficking.Curr. Biol. 23 ,
    1173 – 1180 (2013). doi:10.1016/j.cub.2013.05.015;
    pmid: 23770188

  11. C. Raiborget al., Repeated ER-endosome contacts
    promote endosome translocation and neurite outgrowth.
    Nature 520 ,234–238 (2015). doi:10.1038/nature14359;
    pmid: 25855459

  12. B. Knoblachet al., An ER-peroxisome tether exerts peroxisome
    population control in yeast.EMBO J. 32 , 2439–2453 (2013).
    doi:10.1038/emboj.2013.170; pmid: 23900285

  13. J. R. Friedmanet al., ER tubules mark sites of mitochondrial
    division.Science 334 , 358–362 (2011). doi:10.1126/
    science.1207385; pmid: 21885730

  14. A. A. Rowland, P. J. Chitwood, M. J. Phillips, G. K. Voeltz,
    ER contact sites define the position and timing of endosome
    fission.Cell 159 , 1027–1041 (2014). doi:10.1016/
    j.cell.2014.10.023; pmid: 25416943
    15. S. F. Bananiet al., Compositional control of phase-separated
    cellular bodies.Cell 166 , 651–663 (2016). doi:10.1016/
    j.cell.2016.06.010; pmid: 27374333
    16. S. Boeynaemset al., Protein phase separation: A new phase in
    cell biology.Trends Cell Biol. 28 , 420–435 (2018).
    doi:10.1016/j.tcb.2018.02.004; pmid: 29602697
    17. C. J. Decker, R. Parker, P-bodies and stress granules: Possible
    roles in the control of translation and mRNA degradation.Cold
    Spring Harb. Perspect. Biol. 4 , a012286 (2012). doi:10.1101/
    cshperspect.a012286; pmid: 22763747
    18. J. Coller, R. Parker, General translational repression by
    activators of mRNA decapping.Cell 122 , 875–886 (2005).
    doi:10.1016/j.cell.2005.07.012; pmid: 16179257
    19. C. Kilchert, J. Weidner, C. Prescianotto-Baschong, A. Spang,
    Defects in the secretory pathway and high Ca2+induce
    multiple P-bodies.Mol. Biol. Cell 21 , 2624–2638 (2010).
    doi:10.1091/mbc.e10-02-0099; pmid: 20519435
    20. A. Hubstenbergeret al., P-body purification reveals the
    condensation of repressed mRNA regulons.Mol. Cell 68 ,
    144 – 157.e5 (2017). doi:10.1016/j.molcel.2017.09.003;
    pmid: 28965817
    21. C. Wanget al., Context-dependent deposition and regulation of
    mRNAs in P-bodies.eLife 7 , e29815 (2018). doi:10.7554/
    eLife.41300
    22. N. Kedershaet al., Dynamic shuttling of TIA-1 accompanies the
    recruitment of mRNA to mammalian stress granules.
    J. Cell Biol. 151 , 1257–1268 (2000). doi:10.1083/
    jcb.151.6.1257; pmid: 11121440
    23. A. Khonget al., The stress granule transcriptome reveals
    principles of mRNA accumulation in stress granules.Mol. Cell
    68 , 808–820.e5 (2017). doi:10.1016/j.molcel.2017.10.015;
    pmid: 29129640
    24. S. Markmilleret al., Context-dependent and disease-specific
    diversity in protein interactions within stress granules.Cell 172 ,
    590 – 604.e13 (2018). doi:10.1016/j.cell.2017.12.032;
    pmid: 29373831
    25. G. E. Palade, A small particulate component of the cytoplasm.
    J. Biophys. Biochem. Cytol. 1 ,59–68 (1955). doi:10.1083/
    jcb.1.1.59; pmid: 14381428
    26. G. Palade, Intracellular aspects of the process of protein
    synthesis.Science 189 , 347–358 (1975). doi:10.1126/
    science.1096303; pmid: 1096303
    27. C. H. Jan, C. C. Williams, J. S. Weissman, Principles of ER
    cotranslational translocation revealed by proximity-specific
    ribosome profiling.Science 346 , 1257521 (2014). doi:10.1126/
    science.1257521; pmid: 25378630
    28.D. W. Reid, Q. Chen, A. S.-L. Tay, S. Shenolikar, C. V. Nicchitta,
    The unfolded protein response triggers selective mRNA release
    from the endoplasmic reticulum.Cell 158 , 1362–1374 (2014).
    doi:10.1016/j.cell.2014.08.012; pmid: 25215492
    29. N. Kedershaet al., Stress granules and processing bodies are
    dynamically linked sites of mRNP remodeling.J. Cell Biol. 169 ,
    871 – 884 (2005). doi:10.1083/jcb.200502088; pmid: 15967811
    30. C. P. Brangwynneet al., Germline P granules are liquid droplets
    that localize by controlled dissolution/condensation.Science
    324 , 1729–1732 (2009). doi:10.1126/science.1172046;
    pmid: 19460965
    31. S. Alberti, A. Gladfelter, T. Mittag, Considerations and
    challenges in studying liquid-liquid phase separation and
    biomolecular condensates.Cell 176 , 419–434 (2019).
    doi:10.1016/j.cell.2018.12.035; pmid: 30682370
    32. Y. Dinget al., Ratiometric biosensors based on dimerization-
    dependent fluorescent protein exchange.Nat. Methods 12 ,
    195 – 198 (2015). doi:10.1038/nmeth.3261; pmid: 25622108
    33. M. West, N. Zurek, A. Hoenger, G. K. Voeltz, A 3D analysis of
    yeast ER structure reveals how ER domains are organized by
    membrane curvature.J. Cell Biol. 193 , 333–346 (2011).
    doi:10.1083/jcb.201011039; pmid: 21502358
    34. M. Puhka, M. Joensuu, H. Vihinen, I. Belevich, E. Jokitalo,
    Progressive sheet-to-tubule transformation is a general


mechanism for endoplasmic reticulum partitioning in dividing
mammalian cells.Mol. Biol. Cell 23 , 2424–2432 (2012).
doi:10.1091/mbc.e10-12-0950; pmid: 22573885


  1. G. K. Voeltz, W. A. Prinz, Y. Shibata, J. M. Rist, T. A. Rapoport,
    A class of membrane proteins shaping the tubular endoplasmic
    reticulum.Cell 124 , 573–586 (2006). doi:10.1016/
    j.cell.2005.11.047; pmid: 16469703

  2. Y.Shibataet al., Mechanisms determining the morphology of
    the peripheral ER.Cell 143 , 774–788 (2010). doi:10.1016/
    j.cell.2010.11.007; pmid: 21111237
    37.P.Walter,D.Ron,Theunfoldedproteinresponse:From
    stress pathway to homeostatic regulation.Science 334 ,
    1081 – 1086 (2011). doi:10.1126/science.1209038;
    pmid: 22116877

  3. C. Sidrauski, A. M. McGeachy, N. T. Ingolia, P. Walter, The small
    molecule ISRIB reverses the effects of eIF2aphosphorylation
    on translation and stress granule assembly.eLife 4 , e05033
    (2015). doi:10.7554/eLife.05033

  4. S. Jainet al., ATPase-modulated stress granules contain a
    diverse proteome and substructure.Cell 164 , 487–498 (2016).
    doi:10.1016/j.cell.2015.12.038; pmid: 26777405

  5. J. R. Wheeler, T. Matheny, S. Jain, R. Abrisch, R. Parker,
    Distinct stages in stress granule assembly and disassembly.
    eLife 5 , e18413 (2016). doi:10.7554/eLife.18413;
    pmid: 27602576

  6. Y. C. Liaoet al., RNA granules hitchhike on lysosomes for long-
    distance transport, using annexin A11 as a molecular tether.
    Cell 179 ,147–164.e20 (2019). doi:10.1016/j.cell.2019.08.050;
    pmid: 31539493

  7. J. R. Friedman, J. R. Dibenedetto, M. West, A. A. Rowland,
    G. K. Voeltz, Endoplasmic reticulum-endosome contact
    increases as endosomes traffic and mature.Mol. Biol. Cell 24 ,
    1030 – 1040 (2013). doi:10.1091/mbc.e12-10-0733;
    pmid: 23389631

  8. A. Patelet al., A liquid-to-solid phase transition of the ALS
    protein FUS accelerated by disease mutation.Cell 162 ,
    1066 – 1077 (2015). doi:10.1038/s41586-018-0665-2;
    pmid: 30464263

  9. T. O. Vogleret al., TDP-43 and RNA form amyloid-like
    myo-granules in regenerating muscle.Nature 563 ,
    508 – 513 (2018). doi:10.1038/s41586-018-0665-2;
    pmid: 30464263

  10. F. A. Ranet al., Genome engineering using the CRISPR-Cas9
    system.Nat. Protoc. 8 , 2281–2308 (2013). doi:10.1038/
    nprot.2013.143; pmid: 24157548


ACKNOWLEDGMENTS
We thank A. Khong, B. Van Treeck, E. Zamponi, R. G. Abrisch,
B. S. Rao, G. Odorizzi, and D. Buysse for helpful insights and
discussion.Funding:G.K.V. and R.P. are investigators of
the Howard Hughes Medical Institute. J.E.L. and H.W. were
supported by a grant to G.K.V. from the NIH (GM13009816).
Author contributions:J.E.L., G.K.V., and R.P. designed the
research plan and interpreted the results. J.E.L., P.I.C., and H.W.
performed and analyzed the experiments. J.E.L. wrote and R.P. and
G.K.V. edited the manuscript.Competing interests:None of
the authors have a competing interest.Data and materials
availability:All data are available in the manuscript or the
supplementary materials. The expression plasmids reported in this
manuscript are available at Addgene or upon request.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6477/eaay7108/suppl/DC1
Figs. S1 to S5
View/request a protocol for this paper fromBio-protocol.

13 July 2019; resubmitted 4 November 2019
Accepted 4 December 2019
10.1126/science.aay7108

Leeet al.,Science 367 , eaay7108 (2020) 31 January 2020 10 of 10


RESEARCH | RESEARCH ARTICLE

Free download pdf