- J. G. Jardineet al., Priming a broadly neutralizing antibody
response to HIV-1 using a germline-targeting immunogen.
Science 349 , 156–161 (2015). doi:10.1126/science.aac5894;
pmid: 26089355 - J. G. Jardineet al., HIV-1 broadly neutralizing antibody
precursor B cells revealed by germline-targeting immunogen.
Science 351 , 1458–1463 (2016). doi:10.1126/science.aad9195;
pmid: 27013733 - A. T. McGuireet al., Specifically modified Env immunogens
activate B-cell precursors of broadly neutralizing HIV-1 antibodies
in transgenic mice.Nat. Commun. 7 , 10618 (2016).
doi:10.1038/ncomms10618; pmid: 26907590 - B. Brineyet al., Tailored immunogens direct affinity maturation
toward HIV neutralizing antibodies.Cell 166 , 1459–1470.e11
(2016). doi:10.1016/j.cell.2016.08.005; pmid: 27610570 - M. Tianet al., Induction of HIV neutralizing antibody lineages in
mice with diverse precursor repertoires.Cell 166 , 1471–1484.
e18 (2016). doi:10.1016/j.cell.2016.07.029; pmid: 27610571 - D. Soket al., Priming HIV-1 broadly neutralizing antibody
precursors in human Ig loci transgenic mice.Science 353 ,
1557 – 1560 (2016). doi:10.1126/science.aah3945;
pmid: 27608668 - M. Medina-Ramírezet al., Design and crystal structure of a
native-like HIV-1 envelope trimer that engages multiple broadly
neutralizing antibody precursors in vivo.J. Exp. Med. 214 ,
2573 – 2590 (2017). doi:10.1084/jem.20161160;
pmid: 28847869 - C. Havenar-Daughtonet al., The human naïve B cell repertoire
contains distinct subclasses for a germline-targeting HIV-1
vaccine immunogen.Sci. Transl. Med. 10 , eaat0381 (2018).
doi:10.1126/scitranslmed.aat0381;pmid: 29973404 - U.S. National Library of Medicine, A phase I trial to evaluate the
safety and immunogenicity of eOD-GT8 60mer vaccine,
adjuvanted;https://clinicaltrials.gov/ct2/show/
NCT03547245. - N. T. Freundet al., Coexistence of potent HIV-1 broadly
neutralizing antibodies and antibody-sensitive viruses in a
viremic controller.Sci. Transl. Med. 9 , eaal2144 (2017).
doi:10.1126/scitranslmed.aal2144; pmid: 28100831 - C. O. Barneset al., Structural characterization of a highly-potent
V3-glycan broadly neutralizing antibody bound to natively-
glycosylated HIV-1 envelope.Nat. Commun. 9 , 1251 (2018).
doi:10.1038/s41467-018-03632-y; pmid: 29593217 - D. Sok, D. R. Burton, Recent progress in broadly neutralizing
antibodies to HIV.Nat. Immunol. 19 , 1179–1188 (2018).
doi:10.1038/s41590-018-0235-7; pmid: 30333615 - See materials and methods.
- B. Briney, A. Inderbitzin, C. Joyce, D. R. Burton, Commonality
despite exceptional diversity in the baseline human antibody
repertoire.Nature 566 , 393–397 (2019). doi:10.1038/
s41586-019-0879-y; pmid: 30664748 - J. M. Steichenet al., HIV vaccine design to target germline
precursors of glycan-dependent broadly neutralizing
antibodies.Immunity 45 , 483–496 (2016). doi:10.1016/
j.immuni.2016.08.016; pmid: 27617678 - D. W. Kulpet al., Structure-based design of native-like
HIV-1 envelope trimers to silence non-neutralizing epitopes
and eliminate CD4 binding.Nat. Commun. 8 , 1655 (2017).
doi:10.1038/s41467-017-01549-6; pmid: 29162799 - R. K. Abbottet al., Precursor frequency and affinity determine
B cell competitive fitness in germinal centers, tested with
germline-targeting HIV vaccine immunogens.Immunity 48 ,
133 – 146.e6 (2018). doi:10.1016/j.immuni.2017.11.023;
pmid: 29287996 - Y. C. Linet al., One-step CRISPR/Cas9 method for the rapid
generation of human antibody heavy chain knock-in mice.
EMBO J. 37 ,e99243 (2018). doi:10.15252/embj.201899243;
pmid: 30087111 - K. Sliepenet al., Presenting native-like HIV-1 envelope trimers
on ferritin nanoparticles improves their immunogenicity.
Retrovirology 12 , 82 (2015). doi:10.1186/s12977-015-0210-4;
pmid: 26410741 - T. Tokatlianet al., Innate immune recognition of glycans
targets HIV nanoparticle immunogens to germinal centers.
Science 363 , 649–654 (2019). doi:10.1126/science.aat9120;
pmid: 30573546 - A. Escolanoet al., Sequential immunization elicits broadly
neutralizing anti-HIV-1 antibodies in Ig knockin mice.Cell 166 ,
1445 – 1458.e12 (2016). doi:10.1016/j.cell.2016.07.030;
pmid: 27610569
- C. Havenar-Daughton, R. K. Abbott, W. R. Schief, S. Crotty,
When designing vaccines, consider the starting material: The
human B cell repertoire.Curr. Opin. Immunol. 53 , 209– 216
(2018). doi:10.1016/j.coi.2018.08.002; pmid: 30190230 - J. G. Jardineet al., Minimally mutated HIV-1 broadly
neutralizing antibodies to guide reductionist vaccine design.
PLOS Pathog. 12 , e1005815 (2016). doi:10.1371/journal.
ppat.1005815; pmid: 27560183 - S. Bangaruet al., A site of vulnerability on the influenza virus
hemagglutinin head domain trimer interface.Cell 177 ,
1136 – 1152.e18 (2019). doi:10.1016/j.cell.2019.04.011;
pmid: 31100268 - D. Cortiet al., A neutralizing antibody selected from plasma
cells that binds to group 1 and group 2 influenza A
hemagglutinins.Science 333 , 850–856 (2011). doi:10.1126/
science.1205669; pmid: 21798894 - A. I. Flyaket al., HCV broadly neutralizing antibodies use a
CDRH3 disulfide motif to recognize an E2 glycoprotein site that
can be targeted for vaccine design.Cell Host Microbe 24 ,
703 – 716.e3 (2018).doi:10.1016/j.chom.2018.10.009;
pmid: 30439340 - E. Landaiset al., Broadly neutralizing antibody responses in a
large longitudinal sub-Saharan HIV primary infection cohort.
PLOS Pathog. 12 , e1005369 (2016). doi:10.1371/journal.
ppat.1005369; pmid: 26766578 - C. Sulowayet al., Automated molecular microscopy: The new
Leginon system.J. Struct. Biol. 151 ,41–60 (2005).
doi:10.1016/j.jsb.2005.03.010; pmid: 15890530 - S. Q. Zhenget al., MotionCor2: Anisotropic correction of
beam-induced motion for improved cryo-electron microscopy.
Nat. Methods 14 , 331–332 (2017). doi:10.1038/nmeth.4193;
pmid: 28250466 - K. Zhang, Gctf: Real-time CTF determination and correction.
J. Struct. Biol. 193 ,1–12 (2016). doi:10.1016/j.jsb.2015.11.003;
pmid: 26592709 - N. R. Voss, C. K. Yoshioka, M. Radermacher, C. S. Potter,
B. Carragher, DoG Picker and TiltPicker: Software tools to
facilitate particle selection in single particle electron
microscopy.J. Struct. Biol. 166 , 205–213 (2009). doi:10.1016/
j.jsb.2009.01.004; pmid: 19374019 - D. Kimanius, B. O. Forsberg, S. H. Scheres, E. Lindahl,
Accelerated cryo-EM structure determination with
parallelisation using GPUs in RELION-2.eLife 5 , e18722 (2016).
doi:10.7554/eLife.18722; pmid: 27845625 - P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and
development of Coot.Acta Crystallogr. D Biol. Crystallogr. 66 ,
486 – 501 (2010). doi:10.1107/S0907444910007493;
pmid: 20383002 - P. D. Adamset al., PHENIX: A comprehensive Python-based
system for macromolecular structure solution.Acta Crystallogr.
D Biol. Crystallogr. 66 , 213–221 (2010). doi:10.1107/
S0907444909052925; pmid: 20124702 - P.Conway, M. D. Tyka, F. DiMaio, D. E. Konerding, D. Baker,
Relaxation of backbone bond geometry improves protein
energy landscape modeling.Protein Sci. 23 ,47–55 (2014).
doi:10.1002/pro.2389; pmid: 24265211 - T. Lütteke, M. Frank, C. W. von der Lieth, Carbohydrate
Structure Suite (CSS): Analysis of carbohydrate 3D structures
derived from the PDB.Nucleic Acids Res. 33 , D242–D246
(2005). doi:10.1093/nar/gki013; pmid: 15608187 - M. D. Winnet al., Overview of the CCP4 suite and current
developments.Acta Crystallogr. D Biol. Crystallogr. 67 ,
235 – 242 (2011). doi:10.1107/S0907444910045749;
pmid: 21460441 - B. A. Baradet al., EMRinger: Side chain-directed model
and map validation for 3D cryo-electron microscopy.
Nat. Methods 12 , 943–946 (2015). doi:10.1038/nmeth.3541;
pmid: 26280328 - V. B. Chenet al., MolProbity: All-atom structure validation for
macromolecular crystallography.Acta Crystallogr. D Biol.
Crystallogr. 66 ,12–21 (2010). doi:10.1107/
S0907444909042073; pmid: 20057044 - E. F. Pettersenet al., UCSF Chimera—A visualization system
for exploratory research and analysis.J. Comput. Chem. 25 ,
1605 – 1612 (2004). doi:10.1002/jcc.20084; pmid: 15264254
48. J. R. Williset al., Redesigned HIV antibodies exhibit enhanced
neutralizing potency and breadth.J. Clin. Invest. 125 ,
2523 – 2531 (2015). doi:10.1172/JCI80693; pmid: 25985274
49. B. J. DeKoskyet al., In-depth determination and analysis of the
human paired heavy- and light-chain antibody repertoire.Nat. Med.
21 ,86–91 (2015). doi: 1 0.1038/nm.3743;pmid: 25501908
50. M. P. Lefrancet al., IMGT®, the international ImMunoGeneTics
information system®25 years on.Nucleic Acids Res. 43 ,
D413–D422 (2015). doi:10.1093/nar/gku1056; pmid: 25378316
51. E. Krissinel, K. Henrick, Inference of macromolecular
assemblies from crystalline state.J. Mol. Biol. 372 , 774– 797
(2007). doi:10.1016/j.jmb.2007.05.022; pmid: 17681537
52. M. P. Lefrancet al., IMGT unique numbering for
immunoglobulin and T cell receptor variable domains and Ig
superfamily V-like domains.Dev. Comp. Immunol. 27 ,55– 77
(2003). doi:10.1016/S0145-305X(02)00039-3;
pmid: 12477501
ACKNOWLEDGMENTS
We thank H. Gristick and P. Bjorkman for providing atomic
coordinates of unliganded BG18 Fab in advance of publication ( 17 )
and C. Corbaci for graphical design assistance for the summary.
Funding:This work was supported by the National Institute of
Allergy and Infectious Diseases (NIAID) UM1 Al100663 (Scripps
Center for HIV/AIDS Vaccine Immunology and Immunogen
Discovery) and UM1 AI144462 (Scripps Consortium for HIV/AIDS
Vaccine Development) (to W.R.S., F.D.B., S.C., A.B.W., and
D.R.B) and NIAID R01 AI113867 (to W.R.S.); by the Ragon Institute
of MGH, MIT, and Harvard (to F.D.B., W.R.S., and D.R.B.); by the
International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody
Consortium (NAC) and Center (to W.R.S., A.B.W., I.A.W., and
D.R.B.); and through the Collaboration for AIDS Vaccine Discovery
funding for the IAVI NAC Center (to W.R.S., A.B.W., I.A.W., and
D.R.B.).Author contributions:J.M.S. and W.R.S. conceived the
study. J.M.S., Y.-C.L., C.H.-D., S.P., G.O., D.R.B., A.B.W., S.C.,
F.D.B., and W.R.S. designed the study. J.M.S., D.W.K., S.R., A.R.,
and W.R.S. designed immunogens. J.M.S. designed Abs. Y.-C.L.,
S.P., S.K., E.M., and F.D.B performed immunization studies. C.H.-D.
and L.T. performed naïve B cell–sorting studies. G.O. and
J.L.T. performed cryo-EM studies. B.B. performed NGS. J.R.W.
performed bioinformatics analyses. D.S., E.L., and J.U. performed
neutralization assays. A.L., O.K., and X.H. characterized immunogens
and Abs. E.G., N.P., Y.A., and M.K. purified proteins. S.M.B. and
I.A.W. contributed structural information. J.M.S. and W.R.S.
wrote the manuscript. All co-authors edited the manuscript.
Competing interests:S.P. is now employed by GSK Vaccines
S.r.l., a company that might benefit indirectly from this research.
D.R.B. is a paid consultant of IAVI. J.M.S. and W.R.S. are inventors
on a patent application submitted by IAVI and The Scripps
Research Institute that covers the N332-GT immunogens
developed in this manuscript.Data and materials availability:
Coordinates and maps for the structural data presented in
this manuscript have been deposited to the Protein Data Bank
under accession codes 6DFG, 6DFH, 6NF5, 6NFC, and 6OC7 and
to the Electron Microscopy Data Bank under accession codes
EMD-7875, EMD-7876, EMD-7884, and EMD-7885. Antibody
sequences discovered during this study have been deposited to
GenBank under accession numbers MN495018 to MN495471
(BG18gHmouse antibodies) and MN514889 to MN514945 (human
naïve B cell antibodies binding N332-GT immunogens). Custom
scripts for the NGS database query will be made available from
W.R.S upon request. NGS sequencing data used in this manuscript
and example analysis methods are available athttps://github.
com/SchiefLab/SteichenScience2019. All other data are available
in the main text or supplementary materials.
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/366/6470/eaax4380/suppl/DC1
Supplementary Text
Figs. S1 to S18
Tables S1 to S7
References ( 53 – 62 )
View/request a protocol for this paper fromBio-protocol.
22 March 2019; accepted 17 October 2019
Published online 31 October 2019
10.1126/science.aax4380
Steichenet al.,Science 366 , eaax4380 (2019) 6 December 2019 13 of 13
RESEARCH | RESEARCH ARTICLE
on December 12, 2019^
http://science.sciencemag.org/
Downloaded from