extendedVplrange]. This provides further
evidence that the edge electrons contributing
to the quantum oscillations in the floating
island configuration are indeed incorporated
into the metal. An additional, smaller sig-
nal of fixed period 15 mV is visible in both
configurations (in the form of direct oscilla-
tions or of an amplitude modulation), which
might originate from the progressive charging
of a nearby defect.
This experimental work demonstrates that
the Coulomb interaction has two facets. It can
both destroy and preserve quantum effects.
Although a metallic island is often pictured as
a floating reservoir of uncorrelated electrons
( 8 , 33 ), we establish that a high-fidelity elec-
tron quantum state transfer can take place
across it, enforced by the Coulomb charging
energy. This provides a means to overcome
limitations imposed by the decoherence of
individual electrons. Moreover, the observed
universal 2pelectron phase shift for one elem-
entary chargeeon the island can allow for a
strong entanglement of single-electron states,
both between themselves or with other quan-
tum degrees of freedom, with a negligible
loss of coherence. Such controllable, strong-
coupling mechanism constitutes a key ele-
ment in the context of quantum Hall edges
envisioned as platformsfor the manipulation
and transfer of quantum information via pro-
pagating electrons ( 21 , 34 – 39 ). In particular, it
is very well suited to implementing quantum
gates for these“flying qubits,”such as the
CNOT proposal involving a conditional phase
shift ofpdescribed in ( 38 ).
REFERENCES AND NOTES
- P. Brouwer, M. Büttiker,Europhys. Lett. 37 , 441– 446
(1997). - Y. Nazarov, Y. Blanter,Quantum Transport(Cambridge Univ.
Press, 2009). - F. Pierreet al.,Phys. Rev. B Condens. Matter Mater. Phys. 68 ,
085413 (2003). - A. Clerk, P. Brouwer, V. Ambegaokar,Phys. Rev. Lett. 87 ,
186801 (2001). - E. G. Idrisov, I. P. Levkivskyi, E. V. Sukhorukov,Phys. Rev. Lett.
121 , 026802 (2018). - C. H. Bennettet al.,Phys. Rev. Lett. 70 ,1895–1899 (1993).
- L. Fu,Phys. Rev. Lett. 104 , 056402 (2010).
- M. Büttiker,IBM J. Res. Develop. 32 ,63–75 (1988).
- Y. M. Blanter, M. Büttiker,Phys. Rep. 336 ,1–166 (2000).
- A. Slobodeniuk, I. Levkivskyi, E. Sukhorukov,Phys. Rev. B
Condens. Matter Mater. Phys. 88 , 165307 (2013). - K. A. Matveev,Phys. Rev. B Condens. Matter 51 , 1743– 1751
(1995). - Y. Nazarov,Phys. Rev. Lett. 82 , 1245–1248 (1999).
- S. Jezouinet al.,Nature 536 ,58–62 (2016).
- S.-Y. Lee, H.-W. Lee, H.-S. Sim,Phys. Rev. B Condens. Matter
Mater. Phys. 86 , 235444 (2012). - E. Sivreet al.,Nat. Phys. 14 ,145–148 (2018).
- A. Whiticaret al., arXiv:1902.07085 [cond-mat.mes-hall]
(2019). - Y. Jiet al.,Nature 422 , 415–418 (2003).
- P.Roulleauet al.,Phys. Rev. B Condens. Matter Mater. Phys.
76 , 161309 (2007). - L. Litvin, H. Tranitz, W. Wegscheider, C. Strunk,Phys. Rev. B
Condens. Matter Mater. Phys. 75 , 033315 (2007). - E. Bieriet al.,Phys. Rev. B Condens. Matter Mater. Phys. 79 ,
245324 (2009). - H. Duprezet al.,Phys. Rev. X 9 , 021030 (2019).
- I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky,
Phys. Rev. Lett. 96 , 016804 (2006). - N. Ofeket al.,Proc. Natl. Acad. Sci. U.S.A. 107 , 5276– 5281
(2010). - C. Bäuerleet al.,Phys. Rev. Lett. 95 , 266805 (2005).
- Materials and methods are available as supplementary
materials. - Z. Iftikharet al.,Nat. Commun. 7 , 12908 (2016).
- P. Roulleauet al.,Phys. Rev. Lett. 102 , 236802 (2009).
- C. Altimiraset al.,Phys. Rev. Lett. 105 , 226804 (2010).
- I. Sivanet al.,Nat. Commun. 7 , 12184 (2016).
30. B. I. Halperin, A. Stern, I. Neder, B. Rosenow,Phys. Rev. B
Condens. Matter Mater. Phys. 83 , 155440 (2011).
31. R. Schusteret al.,Nature 385 , 417–420 (1997).
32. A. van Oudenaarden, M. Devoret, Y. Nazarov, J. Mooij,Nature
391 , 768–770 (1998).
33.M.deJong,C.Beenakker,Physica A 230 ,219– 248
(1996).
34. A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, S. Reggiani,
Phys. Rev. Lett. 84 , 5912–5915 (2000).
35. R.Ionicioiu, G. Amaratunga, F. Udrea,Int. J. Mod. Phys. B 15 ,
125 (2001).
36. T. M. Stace, C. H. Barnes, G. J. Milburn,Phys. Rev. Lett. 93 ,
126804 (2004).
37. E. Bocquillonet al.,Ann. Phys. (Berlin) 526 ,1–30 (2014).
38. D. Glattli, P. Roulleau,Phys. Status Solidi, B Basic Res. 254 ,
1600650 (2017).
39. C. Bäuerleet al.,Rep. Prog. Phys. 81 , 056503 (2018).
40. H. Duprez, E. Sivre, A. Anthore, A. Aassime, A. Cavana, U. Gennser,
F. Pierre, Data displayed in“Transmitting the quantum state of
electrons across a metallic island with Coulomb interaction”,
Zenodo (2019); doi 10.5281/zenodo.3528156.
ACKNOWLEDGMENTS
We thank P. Brouwer, L. Glazman, C. Mora, H. Sim, and E. Sukhorukov
for illuminating discussions.Funding:This work was supported
by the French RENATECH network, the national French program
‘Investissements d’Avenir’(Labex NanoSaclay, ANR-10-LABX-0035),
and the French National Research Agency (projects QuTherm,
ANR-16-CE30-0010, and SIM-CIRCUIT, ANR-18-CE47-0014-01).
Author contributions:E.S. and H.D. performed the experiment and
analyzed the data with help from A.Aa., A.An., and F.P.; F.P.
fabricated the sample with assistance from E.S and H.D.; A.C. and
U.G. grew the 2DEG; F.P. led the project and wrote the manuscript
with input from A.Aa., A.An., E.S., H.D., and U.GCompeting
interests:The authors declare no competing financial interests.
Data and materials availability:The data shown in the paper are
available at Zenodo ( 40 ). Correspondence and requests for materials
should be addressed to F.P. ([email protected]).
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/366/6470/1243/suppl/DC1
Materials and Methods
Figs. S1 to S5
24 January 2019; accepted 6 November 2019
10.1126/science.aaw7856
Duprezet al.,Science 366 , 1243–1247 (2019) 6 December 2019 4of4
RESEARCH | REPORT
on December 12, 2019^
http://science.sciencemag.org/
Downloaded from