samples collected from the channel walls after
the eruption ceased. We also measured varia-
tions in channel velocity and vent activity using
nadir-viewing UAS video. Thermal images
were collected in short campaigns using a
handheld thermal camera positioned 300 m
from the vent. Seismic tremor was tracked by
a permanent seismometer 1 km from the vent,
and infrasound was measured by a temporary
four-microphone array 500 m from the vent.
Summit collapses and the ensuing deforma-
tion changes on the ERZ were tracked with
several electronic tiltmeters.
REFERENCES AND NOTES
- A. J. L. Harris,“Basaltic lava flow hazard,”inVolcanic Hazards,
Risks, and Disasters, J. F. Shroder, P. Papale, Eds. (Elsevier,
2015), pp. 17–46. - A. Harris, T. De Groeve, S. Carn, F. Garel, Risk evaluation,
detection and simulation during effusive eruption disasters.
Geol. Soc. Lond. Spec. Publ. 426 ,1–22 (2016).
doi:10.1144/SP426.29 - S. F. Jenkins, S. J. Day, B. V. E. Faria, J. F. B. D. Fonseca,
Damage from lava flows: Insights from the 2014– 2015
eruption of Fogo, Cape Verde.J. Appl. Volcanol. 6 , 6 (2017).
doi:10.1186/s13617-017-0057-6 - D. Tedescoet al., January 2002 volcano-tectonic eruption of
Nyiragongo volcano, Democratic Republic of Congo.
J. Geophys. Res. Solid Earth 112 , B09202 (2007).
doi:10.1029/2006JB004762
5. L. Stieltjes, P. Moutou, A statistical and probabilistic study
of the historic activity of Piton de la Fournaise, Reunion Island,
Indian Ocean.J. Volcanol. Geotherm. Res. 36 ,67–86 (1989).
doi:10.1016/0377-0273(89)90006-1
6. S. Calvari, M. Coltelli, M. Neri, M. Pompilio, The 1991-1993
Etna eruption chronology and lava flow - field evolution.
Acta Vulcanol. 4 ,1–14 (1994).
7. D. Andronicoet al., A multi-disciplinary study of the 2002-03 Etna
eruption: Insights into a complex plumbing system.Bull. Volcanol.
67 ,314–330 (2005). doi:10.1007/s00445-004-0372-8
8. C. A. Nealet al., The 2018 rift eruption and summit collapse of
Kīlauea Volcano.Science 363 , 367–374 (2019). pmid: 30538164
9. M. Polandet al., The 2014–2015 Pāhoa lava flow crisis at
Kilauea Volcano, Hawai’i: Disaster avoided and lessons learned.
GSA Today 26 ,4–10 (2016). doi:10.1130/GSATG262A.1
10. C. Heliker, T. N. Mattox,“The first two decades of the
Pu‘u‘O‘o-Kupaianaha eruption:Chronology and selected
Patricket al.,Science 366 , eaay9070 (2019) 6 December 2019 9of10
-20
0
20
40
60
80
40
60
80
100
120
0
1
2
3
4
04 06 08 10 12 14 16 18 20
0
500
1000
1500
2000
-20
0
20
40
60
80
80
100
120
1
2
3
4
5
04 06 08 10 12 14 16 18 20
0
500
1000
1500
2000
-50
0
50
60
80
100
120
140
1
2
3
4
5
04 06 08 10 12 14 16 18 20
0
500
1000
1500
2000
Summit tilt, μrad
Bulk effusion rate, m
3 s
-1
RSAM, counts(Lower ERZ)
Infrasound energy,Pa
2 s (Lower ERZ)
Hours (HST),
July 26, 2018
Hours (HST),
July 29, 2018
Hours (HST),
August 2, 2018
summit
collapse
event
A
B
C
D
E
F
G
H
I
J
K
L
1 min
RSAM
10 min
median
1 min
energy
10 min
median
Fig. 8. Other examples of LERZ surges after summit collapse events.
(A,E, andI) Summit ground tilt (station UWD) showing the time of summit
collapse events. (B,F, andJ) LERZ RSAM showing the increase in RSAM after
the summit collapse events. (C,G, andK) Infrasound energy at the LERZ vent
increased within minutes of the summit collapse events. (D,H, andL) Estimated
bulk effusion rates began rising within 20 min of the summit collapse events
( 30 ) and peaked several hours afterward. Gray area shows the uncertainty in
effusion rate estimates based on ±1 m uncertainty in lava level in the channel.
RESEARCH | RESEARCH ARTICLE
on December 12, 2019^
http://science.sciencemag.org/
Downloaded from