Copyright © Swun Math Grade 8 Unit 2 Lesson 3 C TE
Homework
Unit 2 · Lesson 3: Divide Exponents
Objective: I will use the expanded form to show the division of exponents.
Vocabulary Steps:
Properties of Exponents
Power to Power (an)m= anm (Multiply)
Multiply (Like Bases) am⋅an= am+n (Add)
Power of a Product anbn=(ab)n (Keep)
Division (Like Bases)
an
am= a
n−m (Subtract)
- Identify the base(s) and exponent(s).
- Write the exponential notation in expanded
form. - Cancel all fractions that are equivalent to 1.
3
3 = 1 and^
푎푎
푎푎= 1^
- Simplify.
- Check using the properties of exponents.
Example # 1
Directions: Simplify. Write solution in standard form
25
22
Solution:
Expanded Form: Property:
2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2
2∙2^
- 22 ⋅^22 ⋅2⋅2⋅2 1 = 2^3
- 22 ⋅^22 ⋅2⋅2⋅2 1 = 2^3
- 283 =
- 2
5
22 = 2
5−2
- 23 = 8
Example # 2
(− 3 )^4 ⋅ (− 3 )^3
(− 3 )^5
Solution:
Expanded Form: Property:
- (−^3 )∙((−−3^3 ))∙∙((−−3^3 ))∙∙((−−3^3 ))∙∙((−−3^3 ))∙∙((−−3^3 ))∙(−^3 )^
• (−3)∙((−3−3))∙∙((−3−3))∙∙((−3−3))∙∙((−3−3))∙∙((−3−3))∙(−3)^ →((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙(−3) 1 ∙(−3)
• ((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙(−3) 1 ∙(−3)
- ((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙(−3) 1 ∙(−3)=(− 3 )^2
- (− 3 )^2 = 9
- (−3)
(^4) ∙(−3) 3
(−3)^5 =
(−3)^4 +^3
(−3)^5 =
(−3)^7
(−3)^5
- (−3)
7
(−3)^5 = (−3)
7−5
- (−3)^2 = 9
Name: ___
Date: ___