nt12dreuar3esd

(Sean Pound) #1

Article


and thus to the development of longer-lasting devices with higher
energy densities for large-scale energy storage.


Data availability
The data that support the findings of this study are available from
https://doi.org/10.17863/CAM.46274 and the corresponding author
upon reasonable request.



  1. Dalitz, F., Cudaj, M., Maiwald, M. & Guthausen, G. Process and reaction monitoring by
    low-field NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 60 , 52–70 (2012).

  2. Hogben, H. J., Krzystyniak, M., Charnock, G. T. P., Hore, P. J. & Kuprov, I. Spinach – a
    software library for simulation of spin dynamics in large spin systems. J. Magn. Reson.
    208 , 179–194 (2011).

  3. Johnson, C. S., Jr. Diffusion ordered nuclear magnetic resonance spectroscopy:
    principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34 , 203–256 (1999).

  4. Shaw, A. A., Salaun, C., Dauphin, J.-F. & Ancian, B. Artifact-free PFG-enhanced double-
    quantum-filtered COSY experiments. J. Magn. Reson. A 120 , 110–115 (1996).

  5. Willker, W., Leibfritz, D., Kerssebaum, R. & Bermel, W. Gradient selection in inverse
    heteronuclear correlation spectroscopy. Magn. Reson. Chem. 31 , 287–292 (1993).

  6. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear
    NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex.
    J. Am. Chem. Soc. 119 , 6711–6721 (1997).

  7. Boyer, R. D., Johnson, R. & Krishnamurthy, K. Compensation of refocusing inefficiency
    with synchronized inversion sweep (CRISIS) in multiplicity-edited HSQC. J. Magn. Reson.
    165 , 253–259 (2003).

  8. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral
    simulation and analysis in EPR. J. Magn. Reson. 178 , 42–55 (2006).

  9. Dieterich, V. et al. Estimating the cost of organic battery active materials: a case study on
    anthraquinone disulfonic acid. Transl. Mater. Res. 5 , 034001 (2018).

  10. Yang, Z. et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of
    electrical energy. Adv. Energy Mater. 8 , 1702056 (2018).

  11. Gerhardt, M. R. et al. Anthraquinone derivatives in aqueous flow batteries. Adv. Energy
    Mater. 7 , 1601488 (2017).

  12. Orita, A., Verde, M. G., Sakai, M. & Meng, Y. S. A biomimetic redox flow battery based on
    flavin mononucleotide. Nat. Commun. 7 , 13230 (2016).

  13. Wei, X. et al. TEMPO-based catholyte for high-energy-density nonaqueous redox flow
    batteries. Adv. Mater. 26 , 7649–7653 (2014).

  14. Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive,
    safe and low-cost materials. Nature 527 , 78–81 (2015).

  15. Chen, J.-J., Symes, M. D. & Cronin, L. Highly reduced and protonated aqueous solutions of
    [P 2 W 18 O 62 ]6− for on-demand hydrogen generation and energy storage. Nat. Chem. 10 ,
    1042–1047 (2018).

  16. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow
    batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. 56 ,
    686–711 (2017).

  17. Kowalski, J. A., Su, L., Milshtein, J. D. & Brushett, F. R. Recent advances in molecular
    engineering of redox active organic molecules for nonaqueous flow batteries. Curr. Opin.
    Chem. Eng. 13 , 45–52 (2016).
    44. Kwon, G. et al. Multi-redox molecule for high-energy redox flow batteries. Joule 2 ,
    1771–1782 (2018).
    45. DeBruler, C. et al. Designer two-electron storage viologen anolyte materials for neutral
    aqueous organic redox flow batteries. Chem 3 , 961–978 (2017).
    46. Service, R. F. Advances in flow batteries promise cheap backup power. Science 362 ,
    508–509 (2018).
    47. Ji, Y. et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH
    with record capacity retention rate. Adv. Energy Mater. 9 , 1900039 (2019).
    48. Huskinson, B. et al. A metal-free organic–inorganic aqueous flow battery. Nature 505 ,
    195–198 (2014).
    49. Ding, Y., Zhang, C., Zhang, L., Zhou, Y. & Yu, G. Molecular engineering of organic
    electroactive materials for redox flow batteries. Chem. Soc. Rev. 47 , 69–103 (2018).
    50. Holland-Cunz, M. V., Cording, F., Friedl, J. & Stimming, U. Redox flow batteries—concepts
    and chemistries for cost-effective energy storage. Front. Energy 12 , 198–224 (2018).
    51. Ding, Y., Li, Y. & Yu, G. Exploring bio-inspired quinone-based organic redox flow batteries:
    a combined experimental and computational study. Chem 1 , 790–801 (2016).
    52. Ross, R. T. Dipolar broadening of EPR spectra due to solute segregation in frozen aqueous
    solutions. J. Chem. Phys. 42 , 3919–3922 (1965).


Acknowledgements E.W.Z. and C.P.G. acknowledge support from Centre of Advanced
Materials for Integrated Energy Systems (CAM-IES), via EPSRC grant number EP/P007767/1.
E.W.Z., R.J. and C.P.G. acknowledge support from Shell. E.W.Z. acknowledges support from the
Manifest exchange programme via EPSRC grant number EP/N032888/1. T.L. acknowledges
support from the Schlumberger Fellowship, Darwin College. E.J. acknowledges support from
the Swedish Research Council. We thank A. Brookfield for assistance with the EPR
measurement; P. A. A. Klusener from Shell, H. Bronstein, I. Fleming, D. S. Wright, K. Märker,
C. Xu, P. C. M. M. Magusin from the University of Cambridge and E. Castillo-Martínez from
Universidad Complutense de Madrid for discussions; R. Tan from Imperial College London and
D. Lyu, Y. Kim, Y. Jin, and J. Lu from the University of Cambridge for assistance setting up the
redox flow battery. A.W. and Q.S. acknowledge Imperial College start-up funding and CAM-IES
seed funding. J.C.G. acknowledges support from the Spanish Ministry of Science, Innovation
and Universities through a Ramon y Cajal Fellowship (RYC-2015-17722) and the Retos Project
(MAT2017-86796-R).

Author contributions C.P.G. supervised the project. E.W.Z and C.P.G. conceived the idea. E.W.Z.
designed the in situ setups and performed the NMR and EPR experiments and analysis. T.L. and
E.W.Z. performed the infrared experiments. E.J. performed the calculations of reaction
equilibrium, CV fittings and NMR chemical shift. J.L. performed the DFT calculations of the
radical species and their proton hyperfine couplings. I.T. and E.W.Z. designed and performed
the in situ mass spectrometry with assistance from T.L. R.J. performed the CV experiments.
A.W. synthesized DBEAQ under the supervision of Q.S. H.S. and J.C.G. assisted in performing
the in situ NMR experiments. All authors contributed to the discussion of the project. E.W.Z.
and C.P.G. wrote the manuscript with input from all co-authors.

Competing interests The authors declare no competing interests.
Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2081-7.
Correspondence and requests for materials should be addressed to C.P.G.
Reprints and permissions information is available at http://www.nature.com/reprints.
Free download pdf