nt12dreuar3esd

(Sean Pound) #1
Nature | Vol 579 | 12 March 2020 | 283

These data reveal a transcription-independent alternative mecha-
nism (Extended Data Fig. 9) for glucagon action. Our studies provide
evidence in support of INSP3R1 as a potential target for the treatment
of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and
type-2 diabetes; future clinical studies will be required to examine
this possibility.


Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2074-6.



  1. Unger, R. H. Glucoregulatory hormones in health and disease. A teleologic model.
    Diabetes 15 , 500–506 (1966).

  2. Unger, R. H. Pancreatic glucagon in health and disease. Adv. Intern. Med. 17 , 265–288
    (1971).

  3. Müller, T. D., Finan, B., Clemmensen, C., DiMarchi, R. D. & Tschöp, M. H. The new biology
    and pharmacology of glucagon. Physiol. Rev. 97 , 721–766 (2017).

  4. Brand, C. L. et al. Immunoneutralization of endogenous glucagon with monoclonal
    glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic
    rats. Diabetologia 37 , 985–993 (1994).

  5. Sørensen, H. et al. Immunoneutralization of endogenous glucagon reduces hepatic
    glucose output and improves long-term glycemic control in diabetic ob/ob mice.
    Diabetes 55 , 2843–2848 (2006).

  6. Okamoto, H. et al. Glucagon receptor inhibition normalizes blood glucose in severe
    insulin-resistant mice. Proc. Natl Acad. Sci. USA 114 , 2753–2758 (2017).

  7. Kazda, C. M. et al. Evaluation of efficacy and safety of the glucagon receptor antagonist
    LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes
    Care 39 , 1241–1249 (2016).

  8. Guzman, C. B. et al. Treatment with LY2409021, a glucagon receptor antagonist, increases
    liver fat in patients with type 2 diabetes. Diabetes Obes. Metab. 19 , 1521–1528 (2017).

  9. Kazda, C. M. et al. Treatment with the glucagon receptor antagonist LY2409021 increases
    ambulatory blood pressure in patients with type 2 diabetes. Diabetes Obes. Metab. 19 ,
    1071–1077 (2017).
    10. Liang, Y. et al. Reduction in glucagon receptor expression by an antisense
    oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53 , 410–417
    (2004).
    11. Sloop, K. W. et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by
    glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest. 113 , 1571–1581
    (2004).
    12. Henderson, S. J. et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon
    receptor peptide agonist in rodents and non-human primates. Diabetes Obes. Metab. 18 ,
    1176–1190 (2016).
    13. Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production
    in fasting and obesity. Cell Metab. 15 , 739–751 (2012).
    14. Wang, Y. et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in
    fasting and diabetes. Nature 485 , 128–132 (2012).
    15. Ozcan, L. et al. Activation of calcium/calmodulin-dependent protein kinase II in obesity
    mediates suppression of hepatic insulin signaling. Cell Metab. 18 , 803–815 (2013).
    16. Feriod, C. N. et al. Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver.
    Hepatol. Commun. 1 , 23–35 (2017).
    17. Perry, R. J. et al. Leptin mediates a glucose-fatty acid cycle to maintain glucose
    homeostasis in starvation. Cell 172 , 234–248 (2018).
    18. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin
    resistance and type 2 diabetes. Cell 160 , 745–758 (2015).
    19. Pagnon, J. et al. Identification and functional characterization of protein kinase A
    phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase.
    Endocrinology 153 , 4278–4289 (2012).
    20. Liljenquist, J. E. et al. Effects of glucagon on lipolysis and ketogenesis in normal and
    diabetic men. J. Clin. Invest. 53 , 190–197 (1974).
    21. Gravholt, C. H., Møller, N., Jensen, M. D., Christiansen, J. S. & Schmitz, O. Physiological
    levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by
    microdialysis. J. Clin. Endocrinol. Metab. 86 , 2085–2089 (2001).
    22. Wu, M. S. et al. Does glucagon increase plasma free fatty acid concentration in humans
    with normal glucose tolerance? J. Clin. Endocrinol. Metab. 70 , 410–416 (1990).
    23. Jensen, M. D., Heiling, V. J. & Miles, J. M. Effects of glucagon on free fatty acid metabolism
    in humans. J. Clin. Endocrinol. Metab. 72 , 308–315 (1991).
    24. Nichols, B. J. & Denton, R. M. Towards the molecular basis for the regulation of
    mitochondrial dehydrogenases by calcium ions. Mol. Cell. Biochem. 149-150, 203–212
    (1995).
    25. Foster, D. W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin.
    Invest. 122 , 1958–1959 (2012).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.
    © The Author(s), under exclusive licence to Springer Nature Limited 2020

Free download pdf