nt12dreuar3esd

(Sean Pound) #1

218 | Nature | Vol 579 | 12 March 2020


Article


in conventional charge-based circuits. Moreover, because our logic
inputs and outputs are based on the same physical phenomena, several
logic gates can be cascaded directly, without the need for additional
transducers between magnetic and electric signals (Extended Data
Fig. 5). As examples, we present in Fig. 4c a binary half adder created
by cascading four NAND gates to form an XOR gate, and show the full
adder operation by cascading 15 NAND gates in Fig. 4d. This circuit
also demonstrates the possibility to fan out a single output that can be
used to drive the input of the next logic gates. A remaining challenge
is to create magnetic logic circuits with feedback loops. This could be
realized by using either an external electrical circuit to read the output
and write this back to the input with MTJs, or an additional racetrack
with an inverted current direction to drive DWs from the output back
to the input.
For device applications, the scalability and efficiency of magnetic
DW logic circuits should also be addressed. Because the chiral coupling
induced by the DMI is effective at the scale of the magnetic moments,
it should be possible to reduce the size of the logic gates down to a few
nanometres by using advanced lithography techniques. The speed of
the logic operations is related to the DW velocity, which can reach several
hundreds of metres per second for chiral DWs driven by SOTs^21 –^24.
The operation time can be estimated from the time required for a
DW to transfer across the gate, which can be as short as a few tens of
picoseconds for an inverter scaled down to 10 × 10 nm^2 (see Methods).
The energy consumption of a single NOT operation in our 0.8 × 1-μm^2
racetracks is about 20 pJ, which would scale down to less than 20 aJ
in structures with a footprint of 10 × 10 nm^2 (see Methods). The non-
volatility of the magnetic inputs and outputs provides further energy
savings because magnetic DW logic circuits do not consume power
when idle and do not need reloading of data after power-off. These
features make all-electric magnetic DW logic attractive for use in low-
power, ‘instant-on’ microelectronic processors that are ubiquitous in
modern-day electronics.


Online content


Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2061-y.



  1. Allwood, D. A. et al. Submicrometer ferromagnetic NOT gate and shift register. Science
    296 , 2003–2006 (2002).

  2. Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single
    magnetoresistive element. Nature 425 , 485–487 (2003).
    3. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309 , 1688–1692 (2005).
    4. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science
    311 , 205–208 (2006).
    5. Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for
    reconfigurable large-scale circuits. Nature 447 , 573–576 (2007).
    6. Matsunaga, S. et al. Fabrication of a nonvolatile full adder based on logic-in-
    memory architecture using magnetic tunnel junctions. Appl. Phys. Express 1 ,
    091301 (2008).
    7. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device
    with built-in memory. Nat. Nanotechnol. 5 , 266–270 (2010).
    8. Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic.
    IEEE Electron Device Lett. 32 , 1128–1130 (2011).
    9. Breitkreutz, S. et al. Majority gate for nanomagnetic logic with perpendicular magnetic
    anisotropy. IEEE Trans. Magn. 48 , 4336–4339 (2012).
    10. Joo, S. et al. Magnetic-field-controlled reconfigurable semiconductor logic. Nature 494 ,
    72–76 (2013).
    11. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data
    processing. Nat. Commun. 5 , 4700 (2014).
    12. Currivan-Incorvia, J. A. et al. Logic circuit prototypes for three-terminal magnetic tunnel
    junctions with mobile domain walls. Nat. Commun. 7 , 10275 (2016).
    13. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature
    565 , 35–42 (2019).
    14. Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science
    320 , 190–194 (2008).
    15. Franken, J. H., Swagten, H. J. M. & Koopmans, B. Shift registers based on magnetic
    domain wall ratchets with perpendicular anisotropy. Nat. Nanotechnol. 7 , 499–503
    (2012).
    16. Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10 , 195–198
    (2015).
    17. Kubetzka, A., Bode, M., Pietzsch, O. & Wiesendanger, R. Spin-polarized scanning
    tunneling microscopy with antiferromagnetic probe tips. Phys. Rev. Lett. 88 , 057201
    (2002).
    18. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii–Moriya interaction accounting for the
    orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78 , 140403
    (2008).
    19. Franken, J. H., Herps, M., Swagten, H. J. & Koopmans, B. Tunable chiral spin texture in
    magnetic domain-walls. Sci. Rep. 4 , 5248 (2014).
    20. Luo, Z. et al. Chirally coupled nanomagnets. Science 363 , 1435–1439 (2019).
    21. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba
    effect. Nat. Mater. 10 , 419–423 (2011).
    22. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls
    in ultrathin magnetic films. EPL 100 , 57002 (2012).
    23. Ryu, K. S., Thomas, L., Yang, S. H. & Parkin, S. Chiral spin torque at magnetic domain
    walls. Nat. Nanotechnol. 8 , 527–533 (2013).
    24. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of
    chiral ferromagnetic domain walls. Nat. Mater. 12 , 611–616 (2013).
    25. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater.
    12 , 299–303 (2013).
    26. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by
    spin–orbit torques. Nat. Nanotechnol. 12 , 980–986 (2017).
    27. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and
    antiferromagnetic systems. Rev. Mod. Phys. 91 , 035004 (2019).
    28. Benitez, M. J. et al. Magnetic microscopy and topological stability of homochiral Néel
    domain walls in a Pt/Co/AlOx trilayer. Nat. Commun. 6 , 8957 (2015).
    29. Manfrini, M. et al. Interconnected magnetic tunnel junctions for spin-logic applications.
    AIP Adv. 8 , 055921 (2018).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.


© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf