Science_-_7_February_2020_UserUpload.Net

(coco) #1

BTN2A1 or BTN3A1 B30.2 domains were buf-
fer exchanged into PBS and adjusted to a final
concentration of 100mM. HMBPP (Cayman
Chemical) and IPP were adjusted to final con-
centrations of 1.9 and 2 mM, respectively, and
serially injected into the cell in 2-mlincre-
ments, after an initial 0.4-ml injection that was
discarded from the analysis. Data were ana-
lyzed with Microcal Origin software.


Confocal microscopy


LM-MEL-75 WT,BTN2A1null,BTN3A1nullcells
were cultured overnight in RPMI-1640 (Thermo
Fisher) supplemented with 10% (v/v) FCS (JRH
Biosciences), penicillin (100 U/ml), streptomycin
(100mg/ml), Glutamax (2 mM), sodium pyruvate
(1 mM), nonessential amino acids (0.1 mM), and
HEPES buffer (15 mM), pH 7.2 to 7.5 (all from
Invitrogen Life Technologies), plus 50mM
2-mercaptoethanol (Sigma-Aldrich) and al-
lowed to adhere to chamber well slides (Lab-
Tek, Thermo Fisher). The next day, cells were
washed and incubated with human Fc recep-
tor block (Miltenyi Biotec) diluted with Opti-
MEM (Thermo Fisher) on ice for 20 min. Cells
were washed and stained with anti-BTN2A1-
AF647 (clone 259), anti-BTN3A-PE (clone 103.2),
and anti-pan-HLA class I-AF488 (clone W6/32,
BioLegend) diluted in Opti-MEM on ice for
20 min. Cells were fixed with 1% paraform-
aldehyde (Electron Microscopy Sciences) in
PBS for 20 min, then mounted with ProLong
Gold AntiFade (Thermo Fisher) and covered
with a #1 coverslip (Menzel-Gläser) overnight.
Each reagent was titrated to determine the
optimal dilution factor. Z-stack, single-tile im-
ages with 76.9 nm lateral and 400 nm axial
voxel size and 1024 × 1024 voxel density were
acquired on a LSM780 laser scanning confocal
microscope with an inverted 20× (0.8 numer-
ical aperture) objective, PMT detectors, and
Zen software (Zeiss). Fluorochromes were ex-
cited with 488-, 561-, and 633-nm laser lines.
Images were deconvoluted with Huygens Pro-
fessional (Scientific Volume Imaging) and
analyzed with Imaris (Oxford Instruments)
software. Regions of interest defining the
imaged cells were made on the basis of the
brightfieldchannel,andtheImarisColoc
module was used to calculate Pearson corre-
lation coefficients of voxels with intensity
thresholds set for each analyzed channel on
the basis of negative controls for each stain.


Immunoblotting


Cells were washed in PBS and lysed in Pierce
RIPA buffer (Thermo fisher) in the presence of
complete protease inhibitor cocktail (Roche).
Proteinquantificationincelllysateswasper-
formed with Pierce BCA protein assay kit
(Thermo fisher). Samples were run on NuPAGE 4
to 12% Bis-Tris protein gels (Invitrogen Life
Technologies), and proteins were resolved
by immunoblotting with the iBlot system


(Invitrogen Life Technologies). Primary anti-
bodies anti-BTN2A1 (0.2mg/ml, Sigma Prestige)
and GAPDH (0.04mg/ml, Cell Signaling Tech-
nology) were detected with IRDye 680RD goat
anti-rabbit IgG secondary antibody (0.1mg/ml,
Licor). Polyvinylidenedifluoride (PVDF) mem-
brane was scanned with an Odyssey scanner.

Statistical analyses
For comparison of two independent groups, a
nonparametric Mann–WhitneyUtest was used.
For the comparison of more than two inde-
pendent groups, a Kruskal–Wallis test with a
Dunn’s post-test was used. For comparison
of two paired groups, a Wilcoxon test was used.
For comparison of more than two paired groups
that were normally distributed (determined
by a Kolmogorov–Smirnov test), a repeated-
measures ANOVA and Dunnett’smultiple
comparison test were performed with individ-
ual variances computedfor each comparison;
otherwise, a Friedman test with a Dunn’spost-
test was used. Allpvalues (or FDR values for
Fig. 1B) less than 0.05 were considered statis-
tically significant.

REFERENCES AND NOTES


  1. J. Rossjohnet al., T cell antigen receptor recognition of
    antigen-presenting molecules.Annu. Rev. Immunol. 33 ,
    169 – 200 (2015). doi:10.1146/annurev-immunol-032414-
    112334 ; pmid: 25493333

  2. P. Constantet al., Stimulation of human gamma delta T cells
    by nonpeptidic mycobacterial ligands.Science 264 , 267– 270
    (1994). doi:10.1126/science.8146660; pmid: 8146660

  3. Y. Tanakaet al., Natural and synthetic non-peptide antigens
    recognized by human gamma delta T cells.Nature 375 ,
    155 – 158 (1995). doi:10.1038/375155a0; pmid: 7753173

  4. L. Zhao, W. C. Chang, Y. Xiao, H. W. Liu, P. Liu, Methylerythritol
    phosphate pathway of isoprenoid biosynthesis.Annu. Rev.
    Biochem. 82 , 497–530 (2013). doi:10.1146/annurev-biochem-
    052010-100934; pmid: 23746261

  5. A. Sandstromet al., The intracellular B30.2 domain of
    butyrophilin 3A1 binds phosphoantigens to mediate activation
    of human Vg9Vd2 T cells.Immunity 40 , 490–500 (2014).
    doi:10.1016/j.immuni.2014.03.003; pmid: 24703779

  6. Y. L. Wuet al.,gdT cells and their potential for
    immunotherapy.Int. J. Biol. Sci. 10 , 119–135 (2014).
    doi:10.7150/ijbs.7823; pmid: 24520210

  7. J. Zheng, Y. Liu, Y. L. Lau, W. Tu,gd-T cells: An unpolished
    sword in human anti-infection immunity.Cell. Mol. Immunol.
    10 ,50–57 (2013). doi:10.1038/cmi.2012.43; pmid: 23064104

  8. L. Wang, A. Kamath, H. Das, L. Li, J. F. Bukowski, Antibacterial
    effect of human V gamma 2V delta 2 T cells in vivo.J. Clin.
    Invest. 108 , 1349– 1357 (2001). doi:10.1172/JCI200113584;
    pmid: 11696580

  9. D. I. Godfrey, J. Le Nours, D. M. Andrews, A. P. Uldrich,
    J. Rossjohn, Unconventional T Cell Targets for Cancer
    Immunotherapy.Immunity 48 , 453–473 (2018). doi:10.1016/
    j.immuni.2018.03.009; pmid: 29562195

  10. H. Wang, Z. Fang, C. T. Morita, Vgamma2Vdelta2 T Cell
    Receptor recognition of prenyl pyrophosphates is dependent
    on all CDRs.J. Immunol. 184 , 6209–6222 (2010).
    doi:10.4049/jimmunol.1000231; pmid: 20483784

  11. C. T. Moritaet al., Direct presentation of nonpeptide prenyl
    pyrophosphate antigens to human gamma delta T cells.
    Immunity 3 , 495–507 (1995). doi:10.1016/1074-7613(95)
    90178-7; pmid: 7584140

  12. C. Harlyet al., Key implication of CD277/butyrophilin-3
    (BTN3A) in cellular stress sensing by a major humangdT-cell
    subset.Blood 120 , 2269–2279 (2012). doi:10.1182/blood-
    2012-05-430470; pmid: 22767497

  13. D. A. Rhodeset al., Activation of humangdT cells by cytosolic
    interactions of BTN3A1 with soluble phosphoantigens and the
    cytoskeletal adaptor periplakin.J. Immunol. 194 , 2390– 2398
    (2015). doi:10.4049/jimmunol.1401064; pmid: 25637025
    14. Z. Sebestyenet al., RhoB Mediates Phosphoantigen
    Recognition by Vg9Vd2 T Cell Receptor.Cell Reports 15 ,
    1973 – 1985 (2016). doi:10.1016/j.celrep.2016.04.081;
    pmid: 27210746
    15. S. Guet al., Phosphoantigen-induced conformational
    change of butyrophilin 3A1 (BTN3A1) and its implication on
    Vg9Vd2 T cell activation.Proc.Natl.Acad.Sci.U.S.A. 114 ,
    E7311–E7320 (2017). doi:10.1073/pnas.1707547114;
    pmid: 28807997
    16. M. Salimet al., BTN3A1 DiscriminatesgdT Cell
    Phosphoantigens from Nonantigenic Small Molecules via a
    Conformational Sensor in Its B30.2 Domain.ACS Chem. Biol.
    12 , 2631–2643 (2017). doi:10.1021/acschembio.7b00694;
    pmid: 28862425
    17. Y. Yanget al., A Structural Change in Butyrophilin upon
    Phosphoantigen Binding Underlies Phosphoantigen-
    Mediated Vg9Vd2 T Cell Activation.Immunity 50 ,
    1043 – 1053.e5 (2019). doi:10.1016/j.immuni.2019.02.016;
    pmid: 30902636
    18. L. Staricket al., Butyrophilin 3A (BTN3A, CD277)-specific
    antibody 20.1 differentially activates Vg9Vd2 TCR clonotypes and
    interferes with phosphoantigen activation.Eur. J. Immunol. 47 ,
    982 – 992 (2017). doi:10.1002/eji.201646818;pmid: 28386905
    19. F. Riañoet al., Vg9Vd2 TCR-activation by phosphorylated
    antigens requires butyrophilin 3 A1 (BTN3A1) and additional
    genes on human chromosome 6.Eur. J. Immunol. 44 ,
    2571 – 2576 (2014). doi:10.1002/eji.201444712;
    pmid: 24890657
    20. A. Behrenet al., The Ludwig institute for cancer research
    Melbourne melanoma cell line panel.Pigment Cell Melanoma Res.
    26 ,597–600 (2013). doi:10.1111/pcmr.12097;pmid: 23527996
    21. G. Malchereket al., The B7 homolog butyrophilin BTN2A1 is a
    novel ligand for DC-SIGN.J. Immunol. 179 , 3804–3811 (2007).
    doi: 10 .4049/jimmunol.179.6.3804; pmid: 17785817
    22. P. Batardet al., Use of phycoerythrin and allophycocyanin for
    fluorescence resonance energy transfer analyzed by flow
    cytometry: Advantages and limitations.Cytometry 48 ,97– 105
    (2002). doi:10.1002/cyto.10106; pmid: 12116371
    23. M. E. Birnbaumet al., Deconstructing the peptide-MHC
    specificity of T cell recognition.Cell 157 , 1073–1087 (2014).
    doi:10.1016/j.cell.2014.03.047; pmid: 24855945
    24. A. J. Roelofset al., Peripheral blood monocytes are responsible
    for gammadelta T cell activation induced by zoledronic acid
    through accumulation of IPP/DMAPP.Br. J. Haematol. 144 ,
    245 – 250 (2009). doi:10.1111/j.1365-2141.2008.07435.x;
    pmid: 19016713
    25. T. J. Allison, C. C. Winter, J. J. Fournié, M. Bonneville,
    D. N. Garboczi, Structure of a human gammadelta T-cell
    antigen receptor.Nature 411 , 820–824 (2001). doi:10.1038/
    35081115 ; pmid: 11459064
    26. A. P. Uldrichet al., CD1d-lipid antigen recognition by thegd
    TCR.Nat. Immunol. 14 , 1137–1145 (2013). doi:10.1038/ni.2713;
    pmid: 24076636
    27. P. Vantouroutet al., Heteromeric interactions regulate
    butyrophilin (BTN) and BTN-like molecules governinggdT cell
    biology.Proc. Natl. Acad. Sci. U.S.A. 115 , 1039–1044 (2018).
    doi:10.1073/pnas.1701237115; pmid: 29339503
    28. S. Vavassoriet al., Butyrophilin 3A1 binds phosphorylated
    antigens and stimulates humangdT cells.Nat. Immunol. 14 ,
    908 – 916 (2013). doi: 10 .1038/ni.2665; pmid: 23872678
    29. R. Di Marco Barroset al., Epithelia Use Butyrophilin-like
    Molecules to Shape Organ-SpecificgdT Cell Compartments.
    Cell 167 , 203–218.e17 (2016). doi:10.1016/j.cell.2016.08.030;
    pmid: 27641500
    30. D. Melandriet al., ThegdTCR combines innate immunity with
    adaptive immunity by utilizing spatially distinct regions for
    agonist selection and antigen responsiveness.Nat. Immunol.
    19 , 1352–1365 (2018). doi:10.1038/s41590-018-0253-5;
    pmid: 30420626
    31. C. R. Willcoxet al., Butyrophilin-like 3 directly binds a human
    Vg 4 +T cell receptor using a modality distinct from clonally-
    restricted antigen.Immunity 51 , 813–825.e4 (2019).
    doi:10.1016/j.immuni.2019.09.006; pmid: 31628053
    32. B. Castellaet al., The ATP-binding cassette transporter A1
    regulates phosphoantigen release and Vg9Vd2 T cell activation
    by dendritic cells.Nat. Commun. 8 , 15663 (2017).
    doi:10.1038/ncomms15663; pmid: 28580927
    33. J. Holstet al., Generation of T-cell receptor retrogenic mice.
    Nat. Protoc. 1 , 406–417 (2006). doi:10.1038/nprot.2006.61;
    pmid: 17406263
    34. J. Jounget al., Genome-scale CRISPR-Cas9 knockout and
    transcriptional activation screening.Nat. Protoc. 12 , 828– 863
    (2017). doi:10.1038/nprot.2017.016; pmid: 28333914


Rigauet al.,Science 367 , eaay5516 (2020) 7 February 2020 12 of 13


RESEARCH | RESEARCH ARTICLE

Free download pdf