56 GAMES WORLD^ OF PUZZLES^ | june 2019
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
11
2 3 8 8 7 5 3
Figure 1
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
1 1
2 3 8 8 7 5 3
Figure 2
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
11
2 3 8 8 7 5 3
Figure 3
1
1 2 6 9 6 5 5 4 3 4
2
4
1
1
11
2 3 8 8 7 5 3
Figure 4
These eight puzzles feature a unique blend of logic and art. The numbers are all you need to determine which squares
WLSYPHFIƼPPIHMRXSJSVQETMGXYVI,IVIƅWLS[MXƅWHSRI
The numbers outside each row and column tell you how many groups of black squares there are in that line and, in
order, how many consecutive black squares there are in each group. For example, 4 5 9 2 tells you that there will be four
groups that will contain, in order, 4, 5, 9, and 2 consecutive black squares. The fact that the numbers are separated tells
you that there is at least one empty square between them. (There may also be empty squares at the ends of lines.) The
XVMGOMWXSƼKYVISYXLS[QER]IQTX]WUYEVIWGSQIFIX[IIRXLIFPEGOSRIW
,IVIƅWEWXEVXMRKLMRXź;LIRXLIVIƅWEWMRKPIRYQFIVMREVS[ERHXLEXRYQFIVMWKVIEXIVXLERLEPJXLIRYQFIVSJ
WUYEVIWMRXLIVS[]SYGERƼPPMRSRISVQSVIGIRXIVWUYEVIW*SVI\EQTPIMRXLIWEQTPIFIPS[*MKYVI
[LMGLMW
squares wide, the sixth and seventh rows each have the number 8. No matter how you place eight consecutive black
WUYEVIWMREVS[XLIQMHHPIWM\WUYEVIW[MPPFIƼPPIHMR*MKYVI
7MQMPEVPSKMGGERFIYWIHXSWXEVXEPMRIXLEXLEWQSVI
XLERSRIRYQFIVMRMX-RXLIWEQTPIXLIXLMVHGSPYQRGSRXEMRWXLIRYQFIVW8LIWMRKPIFPEGOWUYEVIERHXLIJSP-
PS[MRKIQTX]WUYEVIQYWXXEOIYTEXPIEWXX[SWUYEVIWEFSZIXLI2SQEXXIVLS[XLI]KIXTPEGIHXLIƼJXLXLVSYKL
eighth squares of the column will be black (Figure 3). Figure 4 shows the completed picture. ANSWERS, PAGE 78
4ȳǣǞǘȲǓ2ǗǟȲȨǚǙ
2
4
21
11
12
15
12
3
3
15
31
31
15
26
2212
15
2211
2112
33
15
1
21
42
6
3
1
1
1
1
1
1
1
6
1
1
9
1
1
4
1
3
2
1 2 1 2 2 4
1
2
5
2
4
9
2
3
1
3
3 1 7 1 1 1
2
4
1
8
2
6
1
2
1
5
1
1
4
3
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1 1 1 1 1 3
131
3353
15251
121
113511
171281
11111281
1111112341
111112231
1111112341
111112341
1111112341
11111281
111111211
11 13
11111271
11111271
11111261
21111262
1111251
2111242
211232
211222
21212
2132
323
35
13
1
19
1
1
3
1 2 1 1 1 2 2
1 2 1 1 1 2 1 2
1 1 1 1 1 2 1 1 2
1 2 1 1 1 2 1 1 2
1 1 1 1 1 2 1 1 1 2
1 2 1 1 1 2 1 1 1 1
1 2 1 1 1 2 1 1 1 1 2
1 1 1 1 1 1 2 1 1 1 1 1
1 2 1 1 1 2 1 1 1 1 1
22 30 29
1
1
1
1
2
1
9
10
1
1
9
9
2
1
3
4
8
1
1
2
1
7
2
1
3
4
6
2
1
8
5
2
1
8
3
2
1
11
2
1
1
319