Nature - USA (2020-05-14)

(Antfer) #1

170 | Nature | Vol 581 | 14 May 2020


Article


Although the residual nonlinearity and slow power modulation of the
comb sidebands during the frequency chirp only weakly influences the
distance and velocity evaluation, we emphasize that both effects can be
avoided entirely if both the laser and cavity are modulated in unison^36.
Similarly, the laser can be self-injection-locked to the modulated cavity,
which can furthermore extend the laser coherence length substan-
tially^37 ,^38. Promising actuation technologies include recently developed
high-bandwidth and energy-efficient integrated electro-optical^39 and
piezoelectrical actuators^36.
Moreover, by virtue of the laser line separations, our concept is com-
patible with nanophotonics-based gratings for beam separation and
could greatly simplify optical phased array systems^12 , wherein one
axis of beam separation is provided by the nanophotonic grating and a
second axis is provided by integrated phase shifters. Furthermore, this
concept alleviates problems with eye safety, as the light is dispersed
over multiple detection pixels at all times, similar to time-of-flight
flash systems, yet avoids the problems associated with the excessive
peak powers of high-energy pulsed light sources. Finally, spectrally
multiplexed detection can also be carried out in a dual-comb approach,
whereby the second comb scans in unison with the first, but has a dif-
ferent repetition rate, which removes the need for demultiplexing
and individual detection of the comb lines. It should be noted that
(resonant) electro-optical frequency combs^39 ,^40 based on LiNbO 3 also
provide a platform in which the approach presented here could be
realized. Hence, we conclude that microcombs, combined with con-
current advances in chip-scale lasers, optical beamforming structures,
and hybrid electro-optical integration provide a path towards rapid,
precise and simultaneously long-range coherent lidar modules suit-
able for industrial, automotive and airborne applications demanding
high-speed 3D imaging in excess of ten megapixels per second.


Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2239-3.



  1. Bostick, H. A carbon dioxide laser radar system. IEEE J. Quantum Electron. 3 , 232 (1967).

  2. Urmson, C. et al. Autonomous driving in urban environments: Boss and the urban
    challenge. J. Field Robot. 25 , 425–466 (2008).

  3. Behroozpour, B., Sandborn, P., Wu, M. & Boser, B. E. Lidar system architectures and
    circuits. IEEE Commun. Mag. 55 , 135–142 (2017).

  4. MacDonald, R. I. Frequency domain optical reflectometer. Appl. Opt. 20 , 1840–1844
    (1981).

  5. Uttam, D. & Culshaw, B. Precision time domain reflectometry in optical fiber systems
    using a frequency modulated continuous wave ranging technique. J. Lightwave Technol.
    3 , 971–977 (1985).

  6. Gnanalingam, S. & Weekes, K. Weak echoes from the ionosphere with radio waves of
    frequency 1.42 Mc./s. Nature 170 , 113–114 (1952).

  7. Hymans, A. J. & Lait, J. Analysis of a frequency-modulated continuous-wave ranging
    system. Proc. IEE B 107 , 365 (1960).

  8. Roos, P. A. et al. Ultrabroadband optical chirp linearization for precision metrology
    applications. Opt. Lett. 34 , 3692–3694 (2009).

  9. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in
    optical microresonators. Science 361 , eaan8083 (2018).
    10. Lucas, E., Guo, H., Jost, J., Karpov, M. & Kippenberg, T. J. Detuning-dependent properties
    and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical
    microresonators. Phys. Rev. A 95 , 043822 (2017).
    11. McManamon, P. F. et al. Optical phased array technology. Proc. IEEE 84 , 268–298 (1996).
    12. Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale
    nanophotonic phased array. Nature 493 , 195–199 (2013).
    13. Levinson, J. et al. Towards fully autonomous driving: systems and algorithms. Proc. IEEE
    Intelligent Vehicles Symp. 163–168, https://doi.org/10.1109/IVS.2011.5940562 (2011).
    14. Maddern, W., Pascoe, G., Linegar, C. & Newman, P. 1 year, 1000 km: the Oxford robotcar
    dataset. Int. J. Robot. Res. 36 , 3–15 (2017).
    15. Bosch, T. Laser ranging: a critical review of usual techniques for distance measurement.
    Opt. Eng. 40 , 10 (2001).
    16. Schwarz, B. Mapping the world in 3D. Nat. Photonics  4 , 429–430 (2010).
    17. Mitchell, E. W. et al. Coherent laser ranging for precision imaging through flames. Optica
    5 , 988 (2018).
    18. Petit, J., Stottelaar, B., Feiri, M. & Kargl, F. Remote attacks on automated vehicles sensors:
    experiments on camera and LiDAR. Black Hat Europe Conf. 11 , 1–13 (2015); https://www.
    blackhat.com/docs/eu-15/materials/eu-15-Petit-Self-Driving-And-Connected-Cars-
    Fooling-Sensors-And-Tracking-Drivers-wp1.pdf.
    19. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics  8 , 145–152
    (2014).
    20. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an
    all-optical buffer. Nat. Photonics  4 , 471–476 (2010).
    21. Suh, M. & Vahala, K. J. Soliton microcomb range measurement. Science 359 , 884–887
    (2018).
    22. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs.
    Science 359 , 887–891 (2018).
    23. Kuse, N. & Fermann, M. Frequency-modulated comb LiDAR. APL Photonics  4 , 106105
    (2019).
    24. Pfeiffer, M. H. P. et al. Photonic damascene process for integrated high-Q microresonator
    based nonlinear photonics. Optica 3 , 20–25 (2016).
    25. Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical
    microresonator. Phys. Rev. Lett. 116 , 103902 (2016).
    26. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons
    in optical microresonators. Nat. Phys. 13 , 94–102 (2017).
    27. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys.
    Rev. Lett. 58 , 2209–2211 (1987).
    28. Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb
    generation in whispering-gallery-mode resonators. Phys. Rev. A 87 , 053852 (2013).
    29. Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics.
    Nat. Commun. 8 , 14869 (2017).
    30. Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton
    self-frequency shift and efficiency in optical microcavities: publisher’s note. Opt. Lett. 41 ,
    3722 (2016).
    31. Wang, Y., Anderson, M., Coen, S., Murdoch, S. G. & Erkintalo, M. Stimulated Raman
    scattering imposes fundamental limits to the duration and bandwidth of temporal cavity
    solitons. Phys. Rev. Lett. 120 , 053902 (2018).
    32. Guo, H. et al. Intermode breather solitons in optical microresonators. Phys. Rev. X 7 ,
    041055 (2017).
    33. Klein, T. et al. Multi-MHz retinal OCT. Biomed. Opt. Express 4 , 1890 (2013).
    34. Jiang, Y., Karpf, S. & Jalali, B. Time-stretch LiDAR as a spectrally scanned time-of-flight
    ranging camera. Nat. Photonics  14 , 14–18 (2020).
    35. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent
    optical communications. Nature 546 , 274–279 (2017).
    36. Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Preprint at
    https://arxiv.org/abs/1912.08686 (2020).
    37. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic
    oscillator. Nat. Commun. 6 , 7957 (2015).
    38. Pavlov, N. et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser
    diodes. Nat. Photonics  12 , 694–698 (2018).
    39. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate
    microring resonator. Nature 568 , 373–377 (2019).
    40. Metcalf, A. J., Torres-Company, V., Leaird, D. E. & Weiner, A. M. High-power broadly
    tunable electrooptic frequency comb generator. IEEE J. Sel. Top. Quantum Electron. 19 ,
    231–236 (2013).


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf