Nature - USA (2020-05-14)

(Antfer) #1
Nature | Vol 581 | 14 May 2020 | 183


  1. Li, Y. et al. Structure-sensitive CO 2 electroreduction to hydrocarbons on ultrathin 5-fold
    twinned copper nanowires. Nano Lett. 17 , 1312–1317 (2017).

  2. Lum, Y. et al. Optimizing C–C coupling on oxide-derived copper catalysts for
    electrochemical CO 2 reduction. J. Phys. Chem. C 121 , 14191–14203 (2017).

  3. De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state
    for selective carbon dioxide reduction. Nat. Catal. 1 , 103–110 (2018).

  4. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates.
    Nat. Commun. 8 , 15438 (2017).

  5. Tran, K. et al. Active learning across intermetallics to guide discovery of electrocatalysts
    for CO 2 reduction and H 2 evolution. Nat. Catal. 1 , 696–703 (2018).

  6. van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res.
    15 , 3221–3245 (2014).

  7. Davis, L. E. et al. Handbook of Auger Electron Spectroscopy 2nd edn (Physical Electronics
    Industries, 1976).

  8. Persson, K. A. et al. Prediction of solid-aqueous equilibria: scheme to combine
    first-principles calculations of solids with experimental aqueous states. Phys. Rev. B 85 ,
    235438 (2012).

  9. Montoya, J. H. et al. A high-throughput framework for determining adsorption energies
    on solid surfaces. npj Comput. Mater. 3 , 14 (2017).

  10. Xiao, H. et al. Atomistic mechanisms underlying selectivities in C1 and C2 products
    from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 139 , 130–136
    (2017).

  11. Xiao, H. et al. Cu metal embedded in oxidized matrix catalyst to promote CO 2 activation
    and CO dimerization for electrochemical reduction of CO 2. Proc. Natl Acad. Sci. USA 114 ,
    6685–6688 (2017).
    25. Jain, A. et al. The Materials Project: a materials genome approach to accelerated
    materials innovation. APL Mater. 1 , 011002 (2013).
    26. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem.
    Soc. 152 , J23–J26 (2005).
    27. Wang, L. et al. Electrochemical carbon monoixde reduction on polycrystalline copper:
    effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated
    products. ACS Catal. 8 , 7445–7454 (2018).
    28. Liu, M. et al. Enhanced electrocatalytic CO 2 reduction via field-induced reagent
    concentration. Nature 537 , 382–386 (2016).
    29. Zeng, Z. et al. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates
    for electrochemical energy conversion. Nat. Energy 2 , 17070 (2017).
    30. She, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into
    materials design. Science 355 , 146 (2017).
    31. Larrazábal, G. O. et al. Building blocks for high performance in electrocatalytic CO2
    reduction: materials, optimization strategies, and device engineering. J. Phys. Chem. Lett.
    8 , 3933–3944 (2017).
    32. Whipple, D. T. et al. Prospects of CO 2 utilization via direct heterogeneous electrochemical
    reduction. J. Phys. Chem. Lett. 1 , 3451–3458 (2010).
    33. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace
    petrochemical processes? Science 364 , eaav3506 (2019).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.


© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf