Science - USA (2019-02-15)

(Antfer) #1

two isomers in coexistence with each other, the
transformation must be kinetically controlled,
and comparison to thermodynamic parameters,
such as enthalpies of mixing [which are 1000-fold
smaller ( 31 )] cannot be made. The weak temper-
ature dependence impliesthat the transformation
is predominantly enthalpic, and the mean dif-
ference inDS‡of the transformation (DS‡conversion−
DS‡reversion) of +0.52 meV K−^1 is consistent with
H-bonding entropies. As implied by Fig. 4C, the
a-Cd 37 S 20 structure becomes thermodynami-
cally unstable and converts intob-Cd 37 S 20 ,owing
to changes in the surface energy. Removal of the
surface-energy perturbation by desorption of hy-
droxyl raises the free energy ofb-Cd 37 S 20 , likewise
rendering it thermally unstable and reverting to
theaform.
A coherent transition between two clusters
implies conservation of binding coordination,
a single rate constant for the reaction, and sim-
ultaneous transformation of the entire clus-
ter rather than growth from a nucleation site
( 2 , 32 , 33 ). On the basis of the transformation
kinetics and the lack of any observable inter-
mediates, the upper bound on the lifetime of
an intermediate state must be on the order of
10 −^13 s (see supplementary materials for calcula-
tions), a time scale comparable to bond vibrations
( 33 ) and the lifetime of molecular transition
states ( 34 ); additionally, to achieve the same
rate of transformation for the MSC in an inco-
herent process, a phase boundary would need to
move at a velocity comparable to the speed of
sound of the bulk material ( 28 , 35 ). The small
atomic displacements shown from PDF analysis
indicate a structural reconfiguration without a
change in coordination number. Our experimen-
tal kinetics are thus consistent with a coherent
atomic displacement occurring in a single step
across the entire cluster, therefore bridging our
understanding of molecular isomerization and
solid-solid transformation.


REFERENCES AND NOTES


  1. C. M. Wayman,Annu. Rev. Mater. Sci. 1 , 185–218 (1971).

  2. C. C. Chen, A. B. Herhold, C. S. Johnson, A. P. Alivisatos,
    Science 276 , 398–401 (1997).

  3. V. N. Soloviev, A. Eichhöfer, D. Fenske, U. Banin,J. Am. Chem.
    Soc. 122 , 2673–2674 (2000).

  4. D. R. Nevers, C. B. Williamson, T. Hanrath, R. D. Robinson,
    Chem. Commun. 53 , 2866–2869 (2017).

  5. D. C. Gary, A. Petrone, X. Li, B. M. Cossairt,Chem. Commun.
    (Camb.) 53 , 161–164 (2016).

  6. B. Zhanget al.,Nat. Commun. 9 , 2499 (2018).

  7. Q. Yu, C. Liu,J. Phys. Chem. C 113 , 12766–12771 (2009).

  8. B. M. Cossairt, J. S. Owen,Chem. Mater. 23 ,3114– 3119
    (2011).

  9. S. J. L. Billinge, I. Levin,Science 316 , 561–565 (2007).

  10. C. B. Williamson, D. R. Nevers, T. Hanrath, R. D. Robinson,
    J. Am. Chem. Soc. 137 , 15843–15851 (2015).

  11. D. R. Neverset al.,J. Am. Chem. Soc. 140 ,3652– 3662
    (2018).

  12. H. M. D. Bandara, S. C. Burdette,Chem. Soc. Rev. 41 ,
    1809 – 1825 (2012).

  13. J. Ning, J. Liu, Y. Levi-Kalisman, A. I. Frenkel, U. Banin,J. Am.
    Chem. Soc. 140 , 14627–14637 (2018).

  14. D. C. Garyet al.,J. Am. Chem. Soc. 138 ,1510– 1513
    (2016).

  15. D. Prill, P. Juhás, S. J. Billinge, M. U. Schmidt,Acta Crystallogr.
    A Found. Adv. 72 ,62–72 (2016).
    16.A. N. Beecheret al.,J. Am. Chem. Soc. 136 , 10645– 10653
    (2014).

  16. T. Vossmeyer, G. Reck, B. Schulz, L. Katsikas, H. Weller,J. Am.
    Chem. Soc. 117 , 12881–12882 (1995).

  17. T. Egami, S. J. L. Billinge,Underneath the Bragg Peaks:
    Structural Analysis of Complex Materials(Elsevier, 2003).

  18. J. M. Gibson, M. M. J. Treacy, P. M. Voyles,Ultramicroscopy 83 ,
    169 – 178 (2000).

  19. X. Chen, J. P. Sullivan, T. A. Friedmann, J. M. Gibson,Appl.
    Phys. Lett. 84 , 2823–2825 (2004).

  20. N. W. Alcock, V. M. Tracey, T. C. Waddington,J. Chem. Soc.,
    Dalt. Trans. 0 , 2243–2246 (1976).

  21. L. C. Cass, M. Malicki, E. A. Weiss,Anal. Chem. 85 , 6974– 6979
    (2013).

  22. A. I. Grigor’ev,Russ. J. Inorg. Chem. 8 , 409 (1963).

  23. G. B. Deacon, R. J. Phillips,Coord. Chem. Rev. 33 , 227– 250
    (1980).

  24. A. Schaeferet al.,J. Phys. Chem. C 120 , 28617–28629 (2016).

  25. G. S. Herman, Z. Dohnálek, N. Ruzycki, U. Diebold,J. Phys.
    Chem. B 107 , 2788–2795 (2003).

  26. C. T. Campbell, J. R. V. Sellers,J. Am. Chem. Soc. 134 ,
    18109 – 18115 (2012).

  27. N. N. Thadhani, M. A. Meyers,Prog. Mater. Sci. 30 ,1– 37
    (1986).

  28. C. L. Magee,Metall. Trans. 2 , 2419–2430 (1971).
    30. A. Puzderet al.,Nano Lett. 4 2361 , –2365 (2004).
    31. R. S. Ramalho, M. Ruel,Can. J. Chem. Eng. 46 , 456– 461
    (1968).
    32. L. E. Brus, J. A. W. Harkless, F. H. Stillinger,J. Am. Chem. Soc.
    118 , 4834–4838 (1996).
    33. S. H. Tolbert, A. P. Alivisatos,Science 265 ,373– 376
    (1994).
    34. D. G. Truhlar, B. C. Garrett, S. J. Klippenstein,J. Phys. Chem.
    100 , 12771–12800 (1996).
    35. A. S. Pine,Phys. Rev. B 5 , 2997–3003 (1972).


ACKNOWLEDGMENTS
The authors thank P. Ko and M. Steigerwald.Funding:This
work was supported in part by the National Science Foundation
(NSF) under award nos. CMMI-1344562 and CHE-1507753.
U.B. acknowledges funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program (grant no. 741767). U.B. also thanks the
Alfred & Erica Larisch memorial chair. This work also made use
of the Cornell Center for Materials Research Shared Facilities,
which are supported through the NSF MRSEC (Materials
Research Science and Engineering Centers) program (grant
DMR-1719875). This work includes research conducted at
the Cornell High Energy Synchrotron Source (CHESS), which
is supported by the NSF and the National Institutes of
Health–National Institute of General Medical Sciences under
NSF award DMR-1332208. R.D.R. thanks the U.S. Fulbright
Scholar and Hebrew University for partial funding during this
work.Author contributions:C.B.W. synthesized and prepared
samples for ultraviolet-visible absorption spectroscopy,
FTIR spectroscopy, XPS spectroscopy, and kinetic analysis.
C.B.W. and D.R.N. prepared samples for x-ray total scattering
and diffraction. C.B.W., D.R.N., and A.N. contributed to the
PDF analysis of the total scattering data. I.H. and U.B.
acquired and analyzed fluorescence spectroscopy and lifetime
measurements. All authors contributed to the interpretation of
results and preparation of manuscript.Competing interests:
None declared.Data and materials availability:All data
needed to evaluate the conclusions in the paper are present
in the paper or the supplementary materials.

SUPPLEMENTARY MATERIALS
http://www.sciencemag.org/content/363/6428/731/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S10
Tables S1 to S6
References ( 36 – 48 )
30 July 2018; resubmitted 17 September 2018
Accepted 16 January 2019
10.1126/science.aau9464

Williamsonet al.,Science 363 , 731–735 (2019) 15 February 2019 5of5


RESEARCH | REPORT


on February 14, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf