Science - USA (2019-02-15)

(Antfer) #1

  1. D. J. O’Hara, T. Zhu, R. K. Kawakami, Importance of
    paramagnetic background subtraction for determining the
    magnetic moment in epitaxially grown monolayer and
    few-layer van der Waals magnets.IEEE Magn. Lett. 9 ,
    1405805 (2018). doi:10.1109/LMAG.2018.2867339

  2. S. Y. Kimet al., Charge-spin correlation in van der Waals
    antiferromagnet NiPS 3 .Phys. Rev. Lett. 120 , 136402 (2018).
    doi:10.1103/PhysRevLett.120.136402;
    pmid: 29694193

  3. Y. Wanget al., Emergent superconductivity in an iron-based
    honeycomb lattice initiated by pressure-driven spin-
    crossover.Nat. Commun. 9 , 1914 (2018). doi:10.1038/
    s41467-018-04326-1; pmid: 29765049

  4. X. Zhanget al., Magnetic anisotropy of the single-crystalline
    ferromagnetic insulator Cr 2 Ge 2 Te 6 .Jpn. J. Appl. Phys. 55 ,
    033001 (2016). doi:10.7567/JJAP.55.033001

  5. H. Ohnoet al., Electric-field control of ferromagnetism.
    Nature 408 , 944–946 (2000). doi:10.1038/35050040;
    pmid: 11140674

  6. F. Matsukura, Y. Tokura, H. Ohno, Control of magnetism
    by electric fields.Nat. Nanotechnol. 10 , 209–220 (2015).
    doi:10.1038/nnano.2015.22; pmid: 25740132

  7. C. Biet al., Reversible control of Co magnetism by
    voltage-induced oxidation.Phys. Rev. Lett. 113 , 267202
    (2014). doi:10.1103/PhysRevLett.113.267202;
    pmid: 25615378

  8. S. Jiang, J. Shan, K. F. Mak, Electric-field switching of
    two-dimensional van der Waals magnets.Nat. Mater.
    17 , 406–410 (2018). doi:10.1038/s41563-018-0040-6;
    pmid: 29531370

  9. B. Huanget al., Electrical control of 2D magnetism in bilayer
    CrI 3 .Nat. Nanotechnol. 13 , 544–548 (2018). doi:10.1038/
    s41565-018-0121-3; pmid: 29686292

  10. S. Jiang, L. Li, Z. Wang, K. F. Mak, J. Shan, Controlling
    magnetism in 2D CrI 3 by electrostatic doping.
    Nat. Nanotechnol. 13 , 549–553 (2018). doi:10.1038/
    s41565-018-0135-x; pmid: 29736035

  11. Z. Wanget al., Electric-field control of magnetism in a
    few-layered van der Waals ferromagnetic semiconductor.
    Nat. Nanotechnol. 13 , 554–559 (2018). doi:10.1038/
    s41565-018-0186-z; pmid: 29967458

  12. X. Li, X. Wu, J. Yang, Half-metallicity in MnPSe 3 exfoliated
    nanosheet with carrier doping.J. Am. Chem. Soc.
    136 , 11065–11069 (2014). doi:10.1021/ja505097m;
    pmid: 25036853

  13. F. Liuet al., Room-temperature ferroelectricity in CuInP 2 S 6
    ultrathin flakes.Nat. Commun. 7 , 12357 (2016). doi:10.1038/
    ncomms12357; pmid: 27510418

  14. W. Dinget al., Prediction of intrinsic two-dimensional
    ferroelectrics in In 2 Se 3 and other III 2 -VI 3 van der Waals
    materials.Nat. Commun. 8 , 14956 (2017). doi:10.1038/
    ncomms14956; pmid: 28387225

  15. Y. Zhouet al., Out-of-plane piezoelectricity and
    ferroelectricity in layereda-In 2 Se 3 nanoflakes.Nano Lett.
    17 , 5508–5513 (2017). doi:10.1021/acs.nanolett.7b02198;
    pmid: 28841328

  16. C. Cuiet al., Intercorrelated in-plane and out-of-plane
    ferroelecricity in ultrathin two-dimensional layered
    semiconductor In 2 Se 3 .Nano Lett. 18 , 1253–1258 (2018).
    doi:10.1021/acs.nanolett.7b04852; pmid: 29378142

  17. J. Xiaoet al., Intrinsic two-dimensional ferroelectricity with
    dipole locking.Phys. Rev. Lett. 120 , 227601 (2018).
    doi:10.1103/PhysRevLett.120.227601; pmid: 29906143

  18. L. Seixas, A. S. Rodin, A. Carvalho, A. H. Castro Neto,
    Multiferroic two-dimensional materials.Phys. Rev. Lett.
    116 , 206803 (2016). doi:10.1103/PhysRevLett.116.206803;
    pmid: 27258881

  19. H. Wang, X. Qian, Two-dimensional multiferroics in
    monolayer group IV monochalcogenides.2D Mater. 4 , 015042
    (2017). doi:10.1088/2053-1583/4/1/015042

  20. S.-H. Zhang, B.-G. Liu, A controllable robust multiferroic
    GaTeCl monolayer with colossal 2D ferroelectricity
    and desirable multifunctionality.Nanoscale 10 ,
    5990 – 5996 (2018). doi:10.1039/C7NR09588K;
    pmid: 29542759

  21. W. Luo, K. Xu, H. Xiang, Two-dimensional hyperferroelectric
    metals: A different route to ferromagnetic-ferroelectric
    multiferroics.Phys. Rev. B 96 , 235415 (2017). doi:10.1103/
    PhysRevB.96.235415

  22. J. Qi, H. Wang, X. Chen, X. Qian, Two-dimensional multiferroic
    semiconductors with coexisting ferroelectricity and
    ferromagnetism.Appl. Phys. Lett. 113 , 043102 (2018).
    doi:10.1063/1.5038037
    100. Y. Tian, M. J. Gray, H. Ji, R. J. Cava, K. S. Burch, Magneto-
    elastic coupling in a potential ferromagnetic 2D atomic
    crystal.2D Mater. 3 ,025035(2016).doi:10.1088/2053-1583/
    3/2/025035
    101. Y. Sunet al., Effects of hydrostatic pressure on spin-lattice
    coupling in two-dimensional ferromagnetic Cr 2 Ge 2 Te 6.
    Appl. Phys. Lett. 112 , 072409 (2018). doi:10.1063/1.5016568
    102. Z. Linet al., Pressure-induced spin reorientation
    transition in layered ferromagnetic insulator Cr 2 Ge 2 Te 6.
    Phys. Rev. Mater. 2 , 051004 (2018). doi:10.1103/
    PhysRevMaterials.2.051004
    103. C. Zhaoet al., Enhanced valley splitting in monolayer
    WSe 2 due to magnetic exchange field.Nat. Nanotechnol.
    12 , 757–762 (2017). doi:10.1038/nnano.2017.68;
    pmid: 28459469
    104. D. Zhonget al., Van der Waals engineering of ferromagnetic
    semiconductor heterostructures for spin and valleytronics.
    Sci. Adv. 3 , e1603113 (2017). doi:10.1126/sciadv.1603113;
    pmid: 28580423
    105. L. D. Alegriaet al., Large anomalous Hall effect in
    ferromagnetic insulator-topological insulator
    heterostructures.Appl. Phys. Lett. 105 , 053512 (2014).
    doi:10.1063/1.4892353
    106. M. Mogiet al., Ferromagnetic insulator Cr 2 Ge 2 Te 6 thin
    films with perpendicular remanence.APL Mater. 6 , 091104
    (2018). doi:10.1063/1.5046166
    107. Y. Gonget al., Experimental realization of an intrinsic
    magnetic topological insulator.arXiv:1809.07926
    [cond-mat.mtrl-sci] (21 September 2018).
    108. M. M. Otrokovet al., Prediction and observation of the first
    antiferromagnetic topological insulator.arXiv:1809.07389
    [cond-mat.mtrl-sci] (19 September 2018).
    109. E. D. L. Rienkset al., Large magnetic gap at the Dirac point
    in a Mn-induced Bi 2 Te 3 heterostructure.arXiv:1810.06238
    [cond-mat.mtrl-sci] (15 October 2018).
    110. J. Liet al., Intrinsic magnetic topological insulators in
    van der Waals layered MnBi 2 Te 4 -family materials.
    arXiv:1808.08608[cond-mat.mtrl-sci] (26 August 2018).
    111. J. A. Hagmannet al., Molecular beam epitaxy growth and
    structure of self-assembled Bi 2 Se 3 /Bi 2 MnSe 4 multilayer
    heterostructures.New J. Phys. 19 , 085002 (2017).
    doi:10.1088/1367-2630/aa759c
    112. T. Hiraharaet al., Large-gap magnetic topological
    heterostructure formed by subsurface incorporation of a
    ferromagnetic layer.Nano Lett. 17 , 3493–3500 (2017).
    doi:10.1021/acs.nanolett.7b00560; pmid: 28545300
    113. F. Katmiset al., A high-temperature ferromagnetic
    topological insulating phase by proximity coupling.
    Nature 533 , 513–516 (2016). doi:10.1038/nature17635;
    pmid: 27225124
    114. D. Jena, A. Konar, Enhancement of carrier mobility in
    semiconductor nanostructures by dielectric engineering.
    Phys. Rev. Lett. 98 , 136805 (2007). doi:10.1103/
    PhysRevLett.98.136805; pmid: 17501230
    115. M. M. Ugedaet al., Giant bandgap renormalization and
    excitonic effects in a monolayer transition metal
    dichalcogenide semiconductor.Nat. Mater. 13 , 1091– 1095
    (2014). doi:10.1038/nmat4061; pmid: 25173579
    116. A. Avsaret al., Spin-orbit proximity effect in graphene.
    Nat. Commun. 5 , 4875 (2014). doi:10.1038/ncomms5875;
    pmid: 25255743
    117. T. Miyazaki, N. Tezuka, Giant magnetic tunneling effect in
    Fe/Al 2 O 3 /Fe junction.J. Magn. Magn. Mater. 139 , L231–L234
    (1995). doi:10.1016/0304-8853(95)90001-2
    118. J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey,
    Large magnetoresistance at room temperature in
    ferromagnetic thin film tunnel junctions.Phys. Rev. Lett.
    74 , 3273–3276 (1995). doi:10.1103/PhysRevLett.74.3273;
    pmid: 10058155
    119. W. H. Butler, X.-G. Zhang, T. C. Schulthess, J. M. MacLaren,
    Spin-dependent tunneling conductance of Fe|MgO|Fe
    sandwiches.Phys. Rev. B 63 , 054416 (2001). doi:10.1103/
    PhysRevB.63.054416
    120. J. Mathon, A. Umerski, Theory of tunneling
    magnetoresistance of an epitaxial Fe/MgO/Fe(001)
    junction.Phys. Rev. B 63 , 220403(R) (2001).
    doi:10.1103/PhysRevB.63.220403
    121. S. S. P. Parkinet al., Giant tunnelling magnetoresistance
    at room temperature with MgO (100) tunnel barriers.
    Nat. Mater. 3 , 862–867 (2004). doi:10.1038/nmat1256;
    pmid: 15516928
    122. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando,
    Giant room-temperature magnetoresistance in single-crystal


Fe/MgO/Fe magnetic tunnel junctions.Nat. Mater. 3 ,
868 – 871 (2004). doi:10.1038/nmat1257; pmid: 15516927


  1. G.-X. Miao, M. Müller, J. S. Moodera, Magnetoresistance in
    double spin filter tunnel junctions with nonmagnetic
    electrodes and its unconventional bias dependence.
    Phys. Rev. Lett. 102 , 076601 (2009). doi:10.1103/
    PhysRevLett.102.076601; pmid: 19257701

  2. M. Araiet al., Construction of van der Waals magnetic
    tunnel junction using ferromagnetic layered
    dichalcogenide.Appl. Phys. Lett. 107 , 103107 (2015).
    doi:10.1063/1.4930311

  3. T. Songet al., Giant tunneling magnetoresistance in
    spin-filter van der Waals heterostructures.Science 360 ,
    1214 – 1218 (2018). doi:10.1126/science.aar4851;
    pmid: 29724908

  4. D. R. Kleinet al., Probing magnetism in 2D van der Waals
    crystalline insulators via electron tunneling.Science
    360 , 1218– 1222 (2018). doi:10.1126/science.aar3617;
    pmid: 29724904

  5. H. H. Kimet al., One million percent tunnel
    magnetoresistance in a magnetic van der Waals
    heterostructure.Nano Lett. 18 , 4885–4890 (2018).
    doi:10.1021/acs.nanolett.8b01552; pmid: 30001134

  6. Z. Wanget al., Tunneling spin valves based on Fe 3 GeTe 2 /
    hBN/Fe 3 GeTe 2 van der Waals heterostructures.Nano Lett.
    18 ,4303–4308 (2018). doi:10.1021/acs.nanolett.8b01278;
    pmid: 29870263

  7. D. Ghazaryanet al., Magnon-assisted tunneling in van der
    Waals heterostructures based on CrBr 3 .Nat. Electron. 1 ,
    344 – 349 (2018). doi:10.1038/s41928-018-0087-z

  8. J. B. S. Mendeset al., Spin-current to charge-current
    conversion and magnetoresistance in a hybrid structure
    of graphene and yttrium iron garnet.Phys. Rev. Lett.
    115 , 226601 (2015). doi:10.1103/PhysRevLett.115.226601;
    pmid: 26650313

  9. S. Dushenkoet al., Gate-tunable spin-charge conversion and
    the role of spin-orbit interaction in graphene.Phys. Rev. Lett.
    116 , 166102 (2016). doi:10.1103/PhysRevLett.116.166102;
    pmid: 27152812

  10. C. Chenget al., Spin to charge conversion in MoS 2 monolayer
    with spin pumping.arXiv:1510.03451[cond-mat.mes-hall]
    (6 June 2016).

  11. J. B. S. Mendeset al., Efficient spin to charge current
    conversion in the 2D semiconductor MoS 2 by spin pumping
    from yttrium iron garnet.Appl. Phys. Lett. 112 , 242407
    (2018). doi:10.1063/1.5030643

  12. W. Zhanget al., Research update: Spin transfer torques in
    permalloy on monolayer MoS 2 .APL Mater. 4 , 032302 (2016).
    doi:10.1063/1.4943076

  13. D. MacNeillet al., Control of spin-orbit torques through
    crystal symmetry in WTe 2 /ferromagnet bilayers.Nat. Phys.
    13 , 300–305 (2017). doi:10.1038/nphys3933

  14. Q. Shaoet al., Strong Rashba-Edelstein Effect-induced
    spin-orbit torques in monolayer transition metal
    dichalcogenide/ferromagnet bilayers.Nano Lett. 16 ,
    7514 – 7520 (2016). doi:10.1021/acs.nanolett.6b03300;
    pmid: 27960524

  15. Q. Sun, N. Kioussis, Prediction of manganese trihalides as
    two-dimensional Dirac half-metals.Phys. Rev. B 97 , 094408
    (2018). doi:10.1103/PhysRevB.97.094408

  16. M. Ashtonet al., Two-dimensional intrinsic half-metals
    with large spin gaps.Nano Lett. 17 , 5251–5257 (2017).
    doi:10.1021/acs.nanolett.7b01367; pmid: 28745061

  17. J. He, S. Li, Two-dimensional Janus transition-metal
    dichalcogenides with intrinsic ferromagnetism and
    half-metallicity.Comput. Mater. Sci. 152 , 151–157 (2018).
    doi:10.1016/j.commatsci.2018.05.049

  18. S.-J. Gonget al., Electrically induced 2D half-metallic
    antiferromagnets and spin field effect transistors.
    Proc. Natl. Acad. Sci. U.S.A. 115 , 8511–8516 (2018).
    doi:10.1073/pnas.1715465115; pmid: 30076226

  19. R. Brec, Review on structural and chemical properties
    of transition metal phosphorous trisulfides MPS 3.
    Solid State Ion. 22 ,3–30 (1986). doi:10.1016/
    0167-2738(86)90055-X

  20. M. A. McGuire, Crystal and magnetic structures in layered,
    transition metal dihalides and trihalides.Crystals 7 , 121
    (2017). doi:10.3390/cryst7050121

  21. M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh,
    P. Maksymovych, Metal thio- and selenophosphates
    as multifunctional van der Waals layered materials.
    Adv. Mater. 29 , 1602852 (2017). doi:10.1002/
    adma.201602852; pmid: 28833546


Gong and Zhang,Science 363 , eaav4450 (2019) 15 February 2019 10 of 11


RESEARCH | REVIEW


on February 14, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf