Science - USA (2019-02-15)

(Antfer) #1

GE Healthcare), and the recombinant proteins
were eluted, desalted, and concentrated.


In vitro DPR protein and HP1aassays


HP1aliquid droplets (90mM monomer) were
formed in buffer containing 50 mM tris, pH 7.5.
The preformed HP1adroplets were spotted onto
a coverslip and imaged for 5 min, and then
245 mM(PR) 8 or (PA) 8 peptides were added to the
sample and the sample was imaged for another
5 to 10 min.


i^3 N iPSC culture and neuronal
differentiation


We modified a well-characterized control iPSC
line (WTC11) that harbors a dox-inducible NGN2
transgene at the AAVS1 locus (i^3 N) ( 62 , 63 ).
dCas9-BFP-KRAB was stably expressed in these
i^3 N iPSCs via TALEN-mediated integration of a
CAG-dCas9-BFP-KRAB expression cassette into
theCLYBLsafeharborlocus( 55 ). The dCas9-
BFP-KRAB iPSCs were transduced with lentivi-
rus expressing HP1a-sgRNA for 3 days and then
selected by the addition of puromycin. To dif-
ferentiate i^3 N dCas9-BFP-KRAB iPSCs express-
ing HP1asgRNA into neurons, iPSCs were
dissociated by using Accutase (#AT-104, Inno-
vative Cell Technologies) and then seeded onto
dishes coated with Matrigel (354230, Corning).
Three days after differentiation, cells were dis-
sociated by using Accutase and then seeded
onto poly-L-ornithine–coated plates (6-well plate)
or glass coverslips (24-well plate) at a density
of 7 × 10^5 or 2 × 10^4 cells per well, respectively.
Sixdayslater,theneuronswerefixedwith4%
paraformaldehyde for immunofluorescence stain-
ing or harvested for Western blot and qPCR
analyses.


Statistics


Data are presented as the mean ± the standard
error of the mean (SEM) and analyzed with a
two-tailed unpairedttest or one-way or two-way
analysis of variance (ANOVA) followed by Tukey’s
post hoc analysis (Prism statistical software). End
points of interest [i.e., body weight, brain weight,
poly(PR)-positive cells, poly(PR) expression, NeuN-
positive cortical neurons, Purkinje cell density,
transgene RNA levels,GfapandCD68mRNA
expression, and Gfap and CD68 immunopositiv-
ity] were compared between male and female
mice within each cohort. Other than body weight,
no sex differences were observed. With the ex-
ception of body weight, analyses were performed
on all mice within a given cohort. Data are pres-
ented such as to distinguish male and female
mice;malemicearerepresentedbysolidsym-
bols on dot plots, and female mice by empty
symbols. Statistical analysis of RNA-seq data is
described in the section RNA-seq, Gene Ontol-
ogy, and RE analyses.


REFERENCES AND NOTES



  1. M. DeJesus-Hernandezet al., Expanded GGGGCC
    hexanucleotide repeat in noncoding region of C9ORF72 causes
    chromosome 9p-linked FTD and ALS.Neuron 72 , 245– 256
    (2011). doi:10.1016/j.neuron.2011.09.011; pmid: 21944778
    2. A. E. Rentonet al., A hexanucleotide repeat expansion in
    C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.
    Neuron 72 , 257–268 (2011). doi:10.1016/j.neuron.2011.09.010;
    pmid: 21944779
    3. J. G. O’Rourkeet al., C9orf72 is required for proper
    macrophage and microglial function in mice.Science
    351 ,1324–1329 (2016). doi:10.1126/science.aaf1064;
    pmid: 26989253
    4. A. Burberryet al., Loss-of-function mutations in the C9ORF72
    mouse ortholog cause fatal autoimmune disease.Sci. Transl.
    Med. 8 , 347ra93 (2016). doi:10.1126/scitranslmed.aaf6038;
    pmid: 27412785
    5. C. Sellieret al., Loss of C9ORF72 impairs autophagy and
    synergizes with polyQ Ataxin-2 to induce motor neuron
    dysfunction and cell death.EMBO J. 35 , 1276–1297 (2016).
    doi:10.15252/embj.201593350; pmid: 27103069
    6. M. Yanget al., A C9ORF72/SMCR8-containing complex
    regulates ULK1 and plays a dual role in autophagy.
    Sci. Adv. 2 , e1601167 (2016). doi:10.1126/sciadv.1601167;
    pmid: 27617292
    7. C. P. Websteret al., The C9orf72 protein interacts with Rab1a
    and the ULK1 complex to regulate initiation of autophagy.
    EMBO J. 35 , 1656–1676 (2016). doi:10.15252/
    embj.201694401; pmid: 27334615
    8. P. M. Sullivanet al., The ALS/FTLD associated protein C9orf72
    associates with SMCR8 and WDR41 to regulate the autophagy-
    lysosome pathway.Acta Neuropathol. Commun. 4 , 51 (2016).
    doi:10.1186/s40478-016-0324-5; pmid: 27193190
    9. Y. Shiet al., Haploinsufficiency leads to neurodegeneration in
    C9ORF72 ALS/FTD human induced motor neurons.Nat. Med. 24 ,
    313 – 325 (2018). doi:10.1038/nm.4490; pmid: 29400714
    10. C. J. Donnellyet al., RNA toxicity from the ALS/FTD C9ORF72
    expansion is mitigated by antisense intervention.Neuron 80 ,
    415 – 428 (2013). doi:10.1016/j.neuron.2013.10.015;
    pmid: 24139042
    11. J. Cooper-Knocket al., Sequestration of multiple RNA
    recognition motif-containing proteins by C9orf72 repeat
    expansions.Brain 137 , 2040–2051 (2014). doi:10.1093/brain/
    awu120; pmid: 24866055
    12. D. Sareenet al., Targeting RNA foci in iPSC-derived motor
    neurons from ALS patients with a C9ORF72 repeat expansion.
    Sci. Transl. Med. 5 , 208ra149 (2013). doi:10.1126/
    scitranslmed.3007529; pmid: 24154603
    13. Y. B. Leeet al., Hexanucleotide repeats in ALS/FTD form
    length-dependent RNA foci, sequester RNA binding proteins,
    and are neurotoxic.Cell Rep. 5 , 1178–1186 (2013).
    doi:10.1016/j.celrep.2013.10.049; pmid: 24290757
    14. K. Moriet al., hnRNP A3 binds to GGGGCC repeats and is a
    constituent of p62-positive/TDP43-negative inclusions in the
    hippocampus of patients with C9orf72 mutations.Acta
    Neuropathol. 125 , 413–423 (2013). doi:10.1007/s00401-013-
    1088-7; pmid: 23381195
    15. K. Zhanget al., The C9orf72 repeat expansion disrupts
    nucleocytoplasmic transport.Nature 525 ,56–61 (2015).
    doi:10.1038/nature14973; pmid: 26308891
    16. B. D. Freibaumet al., GGGGCC repeat expansion in C9orf72
    compromises nucleocytoplasmic transport.Nature 525 ,
    129 – 133 (2015). doi:10.1038/nature14974; pmid: 26308899
    17. A. S. Burgueteet al., GGGGCC microsatellite RNA is neuritically
    localized, induces branching defects, and perturbs transport
    granule function.eLife 4 , e08881 (2015). doi:10.7554/
    eLife.08881; pmid: 26650351
    18. P. E. Ashet al., Unconventional translation of C9ORF72
    GGGGCC expansion generates insoluble polypeptides specific
    to c9FTD/ALS.Neuron 77 , 639–646 (2013). doi:10.1016/
    j.neuron.2013.02.004; pmid: 23415312
    19. T. F. Gendronet al., Antisense transcripts of the expanded
    C9ORF72 hexanucleotide repeat form nuclear RNA foci and
    undergo repeat-associated non-ATG translation in c9FTD/ALS.
    Acta Neuropathol. 126 , 829–844 (2013). doi:10.1007/s00401-
    013-1192-8; pmid: 24129584
    20. K. Moriet al., Bidirectional transcripts of the expanded C9orf72
    hexanucleotide repeat are translated into aggregating
    dipeptide repeat proteins.Acta Neuropathol. 126 , 881– 893
    (2013). doi:10.1007/s00401-013-1189-3; pmid: 24132570
    21. K. Moriet al., The C9orf72 GGGGCC repeat is translated into
    aggregating dipeptide-repeat proteins in FTLD/ALS.
    Science 339 , 1335–1338 (2013). doi:10.1126/science.1232927;
    pmid: 23393093
    22. T. Zuet al., RAN proteins and RNA foci from antisense
    transcripts in C9ORF72 ALS and frontotemporal dementia.
    Proc. Natl. Acad. Sci. U.S.A. 110 , E4968–E4977 (2013).
    doi:10.1073/pnas.1315438110; pmid: 24248382
    23. I. Kwonet al., Poly-dipeptides encoded by the C9orf72 repeats
    bind nucleoli, impede RNA biogenesis, and kill cells.
    Science 345 , 1139–1145 (2014). doi:10.1126/science.1254917;
    pmid: 25081482
    24. X. Wenet al., Antisense proline-arginine RAN dipeptides linked
    toC9ORF72-ALS/FTD form toxic nuclear aggregates that
    initiate in vitro and in vivo neuronal death.Neuron 84 , 1213– 1225
    (2014). doi:10.1016/j.neuron.2014.12.010;pmid:25521377
    25. S. Mizielinskaet al., C9orf72 repeat expansions cause
    neurodegeneration inDrosophilathrough arginine-rich proteins.
    Science 345 , 1192–1194 (2014). doi:10.1126/science.1256800;
    pmid: 25103406
    26. K. H. Leeet al., C9orf72 dipeptide repeats impair the assembly,
    dynamics, and function of membrane-less organelles.Cell 167 ,
    774 – 788.e17 (2016). doi:10.1016/j.cell.2016.10.002;
    pmid: 27768896
    27. K. Y. Shiet al., Toxic PRnpoly-dipeptides encoded by the
    C9orf72repeat expansion block nuclear import and export.
    Proc. Natl. Acad. Sci. U.S.A. 114 , E1111–E1117 (2017).
    doi:10.1073/pnas.1620293114; pmid: 28069952
    28. A. Jovičićet al., Modifiers of C9orf72 dipeptide repeat toxicity
    connect nucleocytoplasmic transport defects to FTD/ALS.
    Nat. Neurosci. 18 , 1226–1229 (2015). doi:10.1038/nn.4085;
    pmid: 26308983
    29. N. J. Krameret al., CRISPR-Cas9 screens in human cells and
    primary neurons identify modifiers of C9ORF72 dipeptide-
    repeat-protein toxicity.Nat. Genet. 50 , 603–612 (2018).
    doi:10.1038/s41588-018-0070-7; pmid: 29507424
    30. Z. Taoet al., Nucleolar stress and impaired stress granule
    formation contribute to C9orf72 RAN translation-induced
    cytotoxicity.Hum. Mol. Genet. 24 , 2426–2441 (2015).
    doi:10.1093/hmg/ddv005; pmid: 25575510
    31. K. Kanekuraet al., Poly-dipeptides encoded by the C9ORF72
    repeats block global protein translation.Hum. Mol. Genet.
    25 , 1803–1813 (2016). doi:10.1093/hmg/ddw052;
    pmid: 26931465
    32. S. Boeynaemset al., Phase separation of C9orf72 dipeptide
    repeats perturbs stress granule dynamics.Mol. Cell 65 ,
    1044 – 1055.e5 (2017). doi:10.1016/j.molcel.2017.02.013;
    pmid: 28306503
    33. I. R. Mackenzieet al., Quantitative analysis and clinico-
    pathological correlations of different dipeptide repeat protein
    pathologies in C9ORF72 mutation carriers.Acta Neuropathol.
    130 , 845–861 (2015). doi:10.1007/s00401-015-1476-2;
    pmid: 26374446
    34. S. C. Vatsavayaiet al., Timing and significance of pathological
    features in C9orf72 expansion-associated frontotemporal
    dementia.Brain 139 , 3202 – 3216 (2016). doi:10.1093/brain/
    aww250; pmid: 27797809
    35. J. C. Eissenberg, S. C. Elgin, HP1a: a structural chromosomal
    protein regulating transcription.Trends Genet. 30 , 103– 110
    (2014). doi:10.1016/j.tig.2014.01.002; pmid: 24555990
    36. B. van Steensel, A. S. Belmont, Lamina-associated domains:
    Links with chromosome architecture, heterochromatin, and
    gene repression.Cell 169 , 780–791 (2017). doi:10.1016/
    j.cell.2017.04.022; pmid: 28525751
    37. S. H. Kwon, J. L. Workman, The changing faces of HP1: From
    heterochromatin formation and gene silencing to euchromatic
    gene expression.Bioessays 33 , 280–289 (2011). doi:10.1002/
    bies.201000138; pmid: 21271610
    38. T. Dechatet al., Nuclear lamins: Major factors in the structural
    organization and function of the nucleus and chromatin.
    Genes Dev. 22 , 832–853 (2008). doi:10.1101/gad.1652708;
    pmid: 18381888
    39. Y. J. Zhanget al., Poly(GR) impairs protein translation and
    stress granule dynamics in C9orf72-associated frontotemporal
    dementia and amyotrophic lateral sclerosis.Nat. Med.
    24 , 1136–1142 (2018). doi:10.1038/s41591-018-0071-1;
    pmid: 29942091
    40. B. Frost, F. H. Bardai, M. B. Feany, Lamin dysfunction mediates
    neurodegeneration in tauopathies.Curr. Biol. 26 , 129– 136
    (2016). doi:10.1016/j.cub.2015.11.039; pmid: 26725200
    41. D. K. Shumakeret al., Mutant nuclear lamin A leads to
    progressive alterations of epigenetic control in premature
    aging.Proc. Natl. Acad. Sci. U.S.A. 103 , 8703–8708 (2006).
    doi:10.1073/pnas.0602569103; pmid: 16738054
    42. P. Scaffidi, T. Misteli, Reversal of the cellular phenotype in the
    premature aging disease Hutchinson-Gilford progeria
    syndrome.Nat. Med. 11 , 440 – 445 (2005). doi:10.1038/
    nm1204; pmid: 15750600
    43. A. G. Larsonet al., Liquid droplet formation by HP1asuggests
    a role for phase separation in heterochromatin.Nature 547 ,
    236 – 240 (2017). doi:10.1038/nature22822; pmid: 28636604


Zhanget al.,Science 363 , eaav2606 (2019) 15 February 2019 8of9


RESEARCH | RESEARCH ARTICLE


on February 14, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf