The seven different complex-type N-glycans on
UMOD (Fig. 1A) may therefore competitively
inhibit adhesion of other pathogens to other
epithelial receptors. Finally, the resolved site-
specific N-glycosylation pattern and architecture
of UMOD filaments will serve as a framework
for studying the mechanisms that underlie
UMOD’s roles in the regulation of salt transport,
kidney diseases, and innate immunity ( 1 , 19 ).
REFERENCES AND NOTES
- O. Devuyst, E. Olinger, L. Rampoldi,Nat. Rev. Nephrol. 13 ,
525 – 544 (2017). - M. Truduet al.,Nat. Med. 19 , 1655–1660 (2013).
- S. Ghirottoet al.,J. Am. Soc. Nephrol. 27 , 2983– 2996
(2016). - G. Zhouet al.,J. Cell Sci. 114 , 4095–4103 (2001).
- J. Parkkinen, R. Virkola, T. K. Korhonen,Infect. Immun. 56 ,
2623 – 2630 (1988). - J. Pak, Y. Pu, Z. T. Zhang, D. L. Hasty, X. R. Wu,J. Biol. Chem.
276 , 9924–9930 (2001). - M. S. Conoveret al.,Cell Host Microbe 20 , 482–492 (2016).
- F. Serafini-Cessi, A. Monti, D. Cavallone,Glycoconj. J. 22 ,
383 – 394 (2005). - D. Cavallone, N. Malagolini, A. Monti, X.-R. Wu, F. Serafini-Cessi,
J. Biol. Chem. 279 ,216–222 (2004). - J. M. Bates Jr.et al.,Kidney Int. 65 , 791–797 (2004).
- L. Moet al.,Am.J.Physiol.RenalPhysiol. 286 ,F795–F802
(2004). - M. Brunatiet al.,eLife 4 , e08887 (2015).
- K. R. Porter, I. Tamm,J. Biol. Chem. 212 , 135–140 (1955).
14. B. Xieet al.,J. Biol. Chem. 281 , 14644–14653 (2006).
15.M. Beck, W. Baumeister,Trends Cell Biol. 26 , 825– 837
(2016).
16. M. Bokhoveet al.,Proc. Natl. Acad. Sci. U.S.A. 113 , 1552– 1557
(2016).
17. J. S. Hunt, P. R. MacDonald, W. A. Day, A. R. McGiven,
Pathology 12 , 609–621 (1980).
18. L. Jovine, H. Qi, Z. Williams, E. Litscher, P. M. Wassarman,
Nat. Cell Biol. 4 , 457–461 (2002).
19. L. Rampoldi, F. Scolari, A. Amoroso, G. Ghiggeri, O. Devuyst,
Kidney Int. 80 , 338–347 (2011).
20. E. Hahnet al.,J. Mol. Biol. 323 , 845–857 (2002).
21. M. M. Saueret al.,Nat. Commun. 7 , 10738 (2016).
22. M. M. Saueret al.,J. Am. Chem. Soc. 141 , 936–944 (2019).
23. J. M. Medeiros, D. Böck, M. Pilhofer,Curr. Opin. Microbiol. 43 ,
62 – 68 (2018).
24. D. J. Wurpel, S. A. Beatson, M. Totsika, N. K. Petty,
M. A. Schembri,PLOS ONE 8 , e52835 (2013).
25. D. J. Wurpelet al.,PLOS ONE 9 , e93177 (2014).
26. T. J. Wiles, R. R. Kulesus, M. A. Mulvey,Exp. Mol. Pathol. 85 ,
11 – 19 (2008).
27. G. Minet al.,J. Mol. Biol. 317 , 697–706 (2002).
28. K. Mooret al.,Nature 544 , 498–502 (2017).
29. N. Holden, M. Totsika, L. Dixon, K. Catherwood, D. L. Gally,
Infect. Immun. 75 , 3325– 3334 (2007).
30. S. Lindberget al.,Infect. Immun. 76 , 771–780 (2008).
31. Y. Xia, D. Gally, K. Forsman-Semb, B. E. Uhlin,EMBO J. 19 ,
1450 – 1457 (2000).
ACKNOWLEDGMENTS
We thank the Functional Genomics Center Zürich, specifically
S. Chesnov and P. Hunziker for performing the matrix-assisted
laser desorption/ionization mass spectrometry (MALDI-MS)
analysis and Edman sequencing, H. Debaix for the genotyping;
E. Olinger and A. Yoshifuji for support in urinary UMOD analyses;
P. Tittmann and M. Peterek for technical support during electron
microscopy data collection; and ScopeM for instrument access at
ETH Zürich. F. Eisenstein is acknowledged for help with
subtomogram average processing and J. Xu for help with analyzing
cryo-ET data. We thank G. Navarra and B. Ernst (University of
Basel) for providing the fluorescent mannoside GN-FP. C. Giese is
acknowledged for providingE. coliAAEC189 (pSH2) cells.
T. Hennet is acknowledged for initial discussions about UMOD
glycosylation.Funding:G.L.W. was supported by a Boehringer
Ingelheim Fonds Ph.D. fellowship. M.P. was supported by the Swiss
National Science Foundation (no. 31003A_179255), the European
Research Council (no. 679209), and the NOMIS foundation.
R.G. was supported by the Swiss National Science Foundation
(nos. 310030B_176403/1 and 31003A_156304). O.D. was
supported by the Swiss National Centre of Competence in
Research Kidney Control of Homeostasis (NCCR Kidney.CH)
program, the Swiss National Science Foundation (no.
310030_189044), and the Rare Disease Initiative Zürich (Radiz).
J.T. was supported by the Swiss National Science Foundation (nos.
PZ00P3_161147 and PZ00P3_183777). M.P. and R.G. were also
supported by basic funding from ETH Zürich.Author contributions:
G.L.W., J.J.S., M.M.S., O.D., M.P., and R.G. designed experiments.
J.J.S., M.M.S., and J.E. purified and biophysically analyzed UMOD.
C.-W.L. and M.A. performed and analyzed MS experiments. G.L.W.
collected and processed cryo-ET data. D.S.Z. constructed the
expression plasmid and performed TIRF microscopy. J.J.S. performed
and analyzed light microscopy experiments. G.L.W. and J.T. collected
patient urine. G.L.W., J.J.S., M.M.S., M.P., and R.G. wrote the
manuscript with comments from all authors.Competing interests:
The authors declare no competing interests.Data and materials
availability:All subtomogram averages shown in this study were
uploaded to the Electron Microscopy Databank (EMD) together
with their respective half maps, masks for Fourier shell correlation
(FSC) calculations, and an example tomogram. Accession numbers:
Weisset al.,Science 369 , 1005–1010 (2020) 21 August 2020 5of6
Fig. 4. Urine from UTI patients shows cell aggregation and pilus-
mediated UMOD association with bacterial cells.(A) Differential
interference contrast (DIC) light microscopy imaging of urine from a
patient with acuteE. coliUTI revealed clustered bacteria. Scale bar, 10mm.
(B) Cryo-ET imaging of urine from the same patient showed piliated
(orange arrowheads) bacterial cells (labeledE. coli). All analyzed cells
(n= 27 tomograms or cells; two representative examples are shown)
were surrounded by filaments with the typical UMOD appearance
(bluearrows).Scalebars,100nm.(C) The cryotomograms revealed
multiple contact sites (black arrowheads) between pili (orange arrowheads)
and UMOD (blue arrows). Scale bars, 100 nm. Magnified views are provided
in the insets. Scale bars, 50 nm.
RESEARCH | REPORT