Science - USA (2020-08-21)

(Antfer) #1

  1. P. Galkaet al., Functional analyses of the plant photosystem
    I-light-harvesting complex II supercomplex reveal that
    light-harvesting complex II loosely bound to photosystem II is
    a very efficient antenna for photosystem I in state II.Plant
    Cell 24 , 2963–2978 (2012). doi:10.1105/tpc.112.100339;
    pmid: 22822202

  2. S. Santabarbara, T. Tibiletti, W. Remelli, S. Caffarri, Kinetics
    and heterogeneity of energy transfer from light harvesting
    complex II to photosystem I in the supercomplex isolated
    fromArabidopsis.Phys. Chem. Chem. Phys. 19 , 9210– 9222
    (2017). doi:10.1039/C7CP00554G; pmid: 28319223

  3. X. Piet al., Unique organization of photosystem I-light-
    harvesting supercomplex revealed by cryo-EM from a red
    alga.Proc. Natl. Acad. Sci. U.S.A. 115 , 4423–4428 (2018).
    doi:10.1073/pnas.1722482115; pmid: 29632169

  4. X. Qinet al., Structure of a green algal photosystem I in
    complex with a large number of light-harvesting complex I
    subunits.Nat. Plants 5 , 263–272 (2019). doi:10.1038/
    s41477-019-0379-y; pmid: 30850820

  5. M. Iwai, P. Grob, A. T. Iavarone, E. Nogales, K. K. Niyogi,
    A unique supramolecular organization of photosystem I in the
    mossPhyscomitrella patens.Nat. Plants 4 , 904–909 (2018).
    doi:10.1038/s41477-018-0271-1; pmid: 30374090

  6. C. Le Quiniouet al., PSI-LHCI ofChlamydomonas reinhardtii:
    Increasing the absorption cross section without losing
    efficiency.Biochim. Biophys. Acta 1847 , 458–467 (2015).
    doi:10.1016/j.bbabio.2015.02.001; pmid: 25681242

  7. S. Caffarri, K. Broess, R. Croce, H. van Amerongen, Excitation
    energy transfer and trapping in higher plant Photosystem II
    complexes with different antenna sizes.Biophys. J. 100 ,2094– 2103
    (2011). doi:10.1016/j.bpj.2011.03.049;pmid:21539776

  8. Y. Takahashi, T. A. Yasui, E. J. Stauber, M. Hippler,
    Comparison of the subunit compositions of the PSI-LHCI
    supercomplex and the LHCI in the green alga
    Chlamydomonas reinhardtii.Biochemistry 43 , 7816 – 7823
    (2004). doi:10.1021/bi035988z; pmid: 15196024

  9. A. Pinnolaet al., A LHCB9-dependent photosystem I
    megacomplex induced under low light inPhyscomitrella
    patens.Nat. Plants 4 , 910–919 (2018). doi:10.1038/s41477-
    018-0270-2; pmid: 30374091

  10. Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, Crystal structure
    of oxygen-evolving photosystem II at a resolution of 1.9 Å.Nature
    473 ,55–60 (2011). doi:10.1038/nature09913;pmid:21499260

  11. F. Müh, A. Zouni, Structural basis of light-harvesting in the
    photosystem II core complex.Protein Sci. 29 , 1090– 1119
    (2020). doi:10.1002/pro.3841; pmid: 32067287

  12. Y. Miloslavinaet al., Charge separation kinetics in intact
    photosystem II core particles is trap-limited. A picosecond
    fluorescence study.Biochemistry 45 , 2436–2442 (2006).
    doi:10.1021/bi052248c; pmid: 16475833

  13. C. D. van der Weij-de Wit, J. P. Dekker, R. van Grondelle,
    I. H. van Stokkum, Charge separation is virtually irreversible
    in photosystem II core complexes with oxidized primary
    quinone acceptor.J. Phys. Chem. A 115 , 3947–3956 (2011).
    doi:10.1021/jp1083746; pmid: 21341818

  14. S. Vassiliev, C. I. Lee, G. W. Brudvig, D. Bruce, Structure-
    based kinetic modeling of excited-state transfer and trapping
    in histidine-tagged photosystem II core complexes from
    synechocystis.Biochemistry 41 , 12236–12243 (2002).
    doi:10.1021/bi0262597; pmid: 12356326

  15. R. Croce, H. van Amerongen, Light-harvesting and structural
    organization of Photosystem II: From individual complexes
    to thylakoid membrane.J. Photochem. Photobiol. B 104 ,
    142 – 153 (2011). doi:10.1016/j.jphotobiol.2011.02.015;
    pmid: 21402480

  16. S. Caffarri, R. Kouril, S. Kereïche, E. J. Boekema, R. Croce,
    Functional architecture of higher plant photosystem II
    supercomplexes.EMBO J. 28 , 3052 – 3063 (2009).
    doi:10.1038/emboj.2009.232; pmid: 19696744

  17. H. Van Amerongen, L. Valkunas, R. van Grondelle,
    Photosyntheric Excitons(World Scientific, 2000).

  18. A. Marin, F. Passarini, R. Croce, R. van Grondelle, Energy
    transfer pathways in the CP24 and CP26 antenna complexes
    of higher plant photosystem II: A comparative study.Biophys.
    J. 99 , 4056–4065 (2010). doi:10.1016/j.bpj.2010.10.034;
    pmid: 21156149
    78. L. Dall’Osto, S. Cazzaniga, D. Zappone, R. Bassi, Monomeric
    light harvesting complexes enhance excitation energy
    transfer from LHCII to PSII and control their lateral spacing in
    thylakoids.Biochim. Biophys. Acta Bioenerg. 1861 , 148035
    (2020). doi:10.1016/j.bbabio.2019.06.007; pmid: 31226317
    79. R. Tokutsu, M. Iwai, J. Minagawa, CP29, a monomeric light-
    harvesting complex II protein, is essential for state transitions
    inChlamydomonas reinhardtii.J. Biol. Chem. 284 , 7777– 7782
    (2009). doi:10.1074/jbc.M809360200; pmid: 19144643
    80. S. Farooq, J. Chmeliov, G. Trinkunas, L. Valkunas,
    H. van Amerongen, Is there excitation energy transfer
    between different layers of stacked photosystem-II-
    containing thylakoid membranes?J. Phys. Chem. Lett. 7 ,
    1406 – 1410 (2016). doi:10.1021/acs.jpclett.6b00474;
    pmid: 27014831
    81. E. G. Andrizhiyevskaya, D. Frolov, R. van Grondelle,
    J. P. Dekker, On the role of the CP47 core antenna in the
    energy transfer and trapping dynamics of Photosystem II.
    Phys. Chem. Chem. Phys. 6 , 4810–4819 (2004).
    doi:10.1039/b411977k
    82. M. Ballottari, L. Dall’Osto, T. Morosinotto, R. Bassi, Contrasting
    behavior of higher plant photosystem I and II antenna systems
    during acclimation.J. Biol. Chem. 282 , 8947–8958 (2007).
    doi:10.1074/jbc.M606417200; pmid: 17229724
    83. J. M. Anderson, W. S. Chow, J. De Las Rivas, Dynamic
    flexibility in the structure and function of photosystem II in
    higher plant thylakoid membranes: The grana enigma.
    Photosynth. Res. 98 , 575–587 (2008). doi:10.1007/s11120-
    008-9381-3; pmid: 18998237
    84. E.Wientjes, H. van Amerongen, R. Croce, Quantum yield of
    charge separation in photosystem II: Functional effect of
    changes in the antenna size upon light acclimation.J. Phys.
    Chem. B 117 , 11200–11208 (2013). doi:10.1021/jp401663w;
    pmid: 23534376
    85. E. J. Boekema, H. van Roon, F. Calkoen, R. Bassi, J. P. Dekker,
    Multiple types of association of photosystem II and its light-
    harvesting antenna in partially solubilized photosystem II
    membranes.Biochemistry 38 , 2233–2239 (1999).
    doi:10.1021/bi9827161; pmid: 10029515
    86. A. J. Bell, L. K. Frankel, T. M. Bricker, High yield non-
    detergent isolation of photosystem I-light-harvesting
    chlorophyll II membranes from spinach thylakoids:
    Implications for the organization of the PS I antennae in
    higher plants.J. Biol. Chem. 290 , 18429–18437 (2015).
    doi:10.1074/jbc.M115.663872; pmid: 26055710
    87. K. N. Yadavet al., Supercomplexes of plant photosystem I
    with cytochrome b6f, light-harvesting complex II and NDH.
    Biochim. Biophys. Acta Bioenerg. 1858 ,12–20 (2017).
    doi:10.1016/j.bbabio.2016.10.006; pmid: 27755973
    88. S. L. Bensonet al., An intact light harvesting complex I
    antenna system is required for complete state transitions in
    Arabidopsis.Nat. Plants 1 , 15176 (2015). doi:10.1038/
    nplants.2015.176; pmid: 27251716
    89. L. Dall’Osto, S. Cazzaniga, M. Havaux, R. Bassi, Enhanced
    photoprotection by protein-bound vs free xanthophyll pools:
    A comparative analysis of chlorophyll b and xanthophyll
    biosynthesis mutants.Mol. Plant 3 , 576–593 (2010).
    doi:10.1093/mp/ssp117; pmid: 20100799
    90. A. V. Ruban, Nonphotochemical Chlorophyll Fluorescence
    Quenching: Mechanism and Effectiveness in Protecting
    Plants from Photodamage.Plant Physiol. 170 , 1903– 1916
    (2016). doi:10.1104/pp.15.01935; pmid: 26864015
    91. X. P. Liet al., A pigment-binding protein essential for
    regulation of photosynthetic light harvesting.Nature 403 ,
    391 – 395 (2000).doi:10.1038/35000131; pmid: 10667783
    92. G. Peerset al., An ancient light-harvesting protein is critical
    for the regulation of algal photosynthesis.Nature 462 ,
    518 – 521 (2009). doi:10.1038/nature08587; pmid: 19940928
    93. D. A. Semchonoket al., Interaction between the photoprotective
    protein LHCSR3 and C 2 S 2 Photosystem II supercomplex in
    Chlamydomonas reinhardtii.Biochim. Biophys. Acta Bioenerg.
    1858 ,379–385 (2017). doi:10.1016/j.bbabio.2017.02.015;
    pmid: 28257778
    94. K. Katoet al., Structural basis for the adaptation and function
    of chlorophyll f in photosystem I.Nat. Commun. 11 , 238
    (2020). doi:10.1038/s41467-019-13898-5; pmid: 31932639
    95. C. Gisrielet al., The structure of Photosystem I acclimated to
    far-red light illuminates an ecologically important acclimation
    process in photosynthesis.Sci. Adv. 6 , eaay6415 (2020).
    doi:10.1126/sciadv.aay6415; pmid: 32076649
    96. H. Toporik, J. Li, D. Williams, P. L. Chiu, Y. Mazor, The
    structure of the stress-induced photosystem I-IsiA antenna
    supercomplex.Nat. Struct. Mol. Biol. 26 , 443–449 (2019).
    doi:10.1038/s41594-019-0228-8; pmid: 31133699
    97. M. Schafferet al., A cryo-FIB lift-out technique enables
    molecular-resolution cryo-ET within native Caenorhabditis
    elegans tissue.Nat. Methods 16 , 757–762 (2019).
    doi:10.1038/s41592-019-0497-5; pmid: 31363205
    98. W. Wietrzynskiet al., Charting the native architecture of
    Chlamydomonasthylakoid membranes with single-molecule
    precision.eLife 9 , e53740 (2020). doi:10.7554/eLife.53740;
    pmid: 32297859
    99. J. Kernet al., Structures of the intermediates of Kok’s
    photosynthetic water oxidation clock.Nature 563 , 421– 425
    (2018). doi:10.1038/s41586-018-0681-2; pmid: 30405241
    100. M. Sugaet al., An oxyl/oxo mechanism for oxygen-oxygen
    coupling in PSII revealed by an x-ray free-electron laser.
    Science 366 , 334–338 (2019). doi:10.1126/science.aax6998;
    pmid: 31624207
    101. C. Gisrielet al., Membrane protein megahertz crystallography
    at the European XFEL.Nat. Commun. 10 , 5021 (2019).
    doi:10.1038/s41467-019-12955-3; pmid: 31685819
    102. F. Ganet al., Extensive remodeling of a cyanobacterial
    photosynthetic apparatus in far-red light.Science 345 ,
    1312 – 1317 (2014). doi:10.1126/science.1256963;
    pmid: 25214622
    103. M. Chen, Chlorophyll modifications and their spectral
    extension in oxygenic photosynthesis.Annu. Rev. Biochem.
    83 , 317–340 (2014). doi:10.1146/annurev-biochem-072711-
    162943 ; pmid: 24635479
    104. T. Forster,“Delocalized excitation and excitation transfer,”in
    Modern Quantum Chemistry. Part III Action of Light and
    Organic Crystals,O. Sinanoglu, Ed. (Academic, 1965), vol. 3,
    pp. 93–137.
    105. H. van Amerongen, R. van Grondelle, Understanding the
    energy transfer function of LHCII, the major light-harvesting
    complex of green plants.J. Phys. Chem. B 105 , 604– 617
    (2001). doi:10.1021/jp0028406
    106. T. Polívka, H. A. Frank, Molecular factors controlling
    photosynthetic light harvesting by carotenoids.Acc. Chem.
    Res. 43 , 1125–1134 (2010). doi:10.1021/ar100030m;
    pmid: 20446691
    107. Z. Liuet al., Crystal structure of spinach major light-
    harvesting complex at 2.72 A resolution.Nature 428 ,
    287 – 292 (2004). doi:10.1038/nature02373; pmid: 15029188
    108. P. Jordanet al., Three-dimensional structure of
    cyanobacterial photosystem I at 2.5 A resolution.
    Nature 411 ,909–917 (2001). doi:10.1038/35082000;
    pmid: 11418848
    109. M. Abramet al., Remodeling of excitation energy transfer
    in extremophilic red algal PSI-LHCI complex during
    light adaptation.Biochim.Biophys.Acta Bioenerg. 1861 ,
    148093 (2020). doi:10.1016/j.bbabio.2019.148093;
    pmid: 31669460
    110. M. Sugaet al., Native structure of photosystem II at
    1.95 Å resolution viewed by femtosecond X-ray pulses.
    Nature 517 ,99–103 (2015). doi:10.1038/nature13991;
    pmid: 25470056
    111. E. Kim, S. Akimoto, R. Tokutsu, M. Yokono, J. Minagawa,
    Fluorescence lifetime analyses reveal how the high light-
    responsive protein LHCSR3 transforms PSII light-harvesting
    complexes into an energy-dissipative state.J. Biol. Chem.
    292 , 18951–18960 (2017). doi:10.1074/jbc.M117.805192;
    pmid: 28972177


ACKNOWLEDGMENTS
We thank V. Mascoli for help in setting up the program for the
analysis of the structures.Competing interests:The authors
declare no competing interests.

10.1126/science.aay2058

Croceet al.,Science 369 , eaay2058 (2020) 21 August 2020 9of9


RESEARCH | REVIEW

Free download pdf