Science - USA (2020-09-04)

(Antfer) #1

  1. M. D. Smith, S. Wilkinson, CCPG1, an unconventional cargo
    receptor for ER-phagy, maintains pancreatic acinar cell health.
    Mol. Cell. Oncol. 5 , e1441631 (2018). doi:10.1080/
    23723556.2018.1441631; pmid: 30263939

  2. J. N. S. Vargaset al., Spatiotemporal control of ULK1 activation
    by NDP52 and TBK1 during selective autophagy.Mol. Cell 74 ,
    347 – 362.e6 (2019). doi:10.1016/j.molcel.2019.02.010;
    pmid: 30853401

  3. E. Turcoet al., FIP200 claw domain binding to p62 promotes
    autophagosome formation at ubiquitin condensates.Mol. Cell
    74 , 330–346.e11 (2019). doi:10.1016/j.molcel.2019.01.035;
    pmid: 30853400

  4. T. Shintani, D. J. Klionsky, Cargo proteins facilitate the
    formation of transport vesicles in the cytoplasm to vacuole
    targeting pathway.J. Biol. Chem. 279 , 29889–29894 (2004).
    doi:10.1074/jbc.M404399200; pmid: 15138258

  5. R. A. Kamber, C. J. Shoemaker, V. Denic, Receptor-bound
    targets of selective autophagy use a scaffold protein to
    activate the Atg1 kinase.Mol. Cell 59 , 372–381 (2015).
    doi:10.1016/j.molcel.2015.06.009; pmid: 26166702

  6. R. Torggleret al., Two independent pathways within selective
    autophagy converge to activate Atg1 kinase at the vacuole.
    Mol. Cell 64 , 221–235 (2016). doi:10.1016/
    j.molcel.2016.09.008; pmid: 27768871
    57. D. Fracchiollaet al., Mechanism of cargo-directed Atg8
    conjugation during selective autophagy.eLife 5 , e18544 (2016).
    doi:10.7554/eLife.18544; pmid: 27879200
    58. J. Sawa-Makarskaet al., Cargo binding to Atg19 unmasks
    additional Atg8 binding sites to mediate membrane-cargo
    apposition during selective autophagy.Nat. Cell Biol. 16 ,
    425 – 433 (2014). doi:10.1038/ncb2935; pmid: 24705553


ACKNOWLEDGMENTS
We thank G. Warren for comments on the manuscript. We thank
S. Brodesser and the CECAD Lipidomics/Metabolomics Facility for
performing lipidomics analyses. We thank M. Hartl from the Max
Perutz Labs Mass Spectrometry Facility, the Max Perutz Labs
BioOptics Facility, and the VBCF Electron Microscopy Facility for
technical support and the VBCF for providing the MS instrument
pool. Anti-CBP antibody and yeast strains carrying Atg2-Atg18
expression cassettes were provided by C. Ungermann. We thank
L. Pietrek for help with the simulation setup and D. Fracchiolla
for expressing and purifying unlabeled Atg21.Funding:This work
was supported by ERC grant 646653 (S.M.), Austrian Science
Fund FWF P32814-B (S.M.) and T724-B20 (J.S.-M.), Human
Frontier Science Program RGP0026/2017 (S.M., G.H., and S.v.B.),
an OEAW Doc fellowship (C.A.), and the Max Planck Society
(G.H., S.v.B., and M.G.).Author contributions:S.M., J.S.-M.,

and G.H. designed and supervised research. V.B., N.C., S.v.B., and
V.N. designed research. J.S.-M., V.B., N.C., S.v.B., V.N., C.A.,
and M.S. performed research. All authors analyzed data and
commented on the manuscript. S.M. and J.S.-M. wrote the
manuscript.Competing interests:S.M. is a member of the
scientific advisory board of Casma Therapeutics.Data and
materials availability:All data are available in the manuscript
or the supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/369/6508/eaaz7714/suppl/DC1
Materials and Methods
Figs. S1 to S11
Tables S1 to S5
References ( 59 – 95 )
MDAR Reproducibility Checklist
Movie S1
Data S1
View/request a protocol for this paper fromBio-protocol.

9 October 2019; resubmitted 16 May 2020
Accepted 6 July 2020
10.1126/science.aaz7714

Sawa-Makarskaet al.,Science 369 , eaaz7714 (2020) 4 September 2020 10 of 10


RESEARCH | RESEARCH ARTICLE

Free download pdf