Science - USA (2020-10-02)

(Antfer) #1

  1. C. Soto,Nat. Rev. Neurosci. 4 , 49–60 (2003).

  2. C. Soto, S. Pritzkow,Nat. Neurosci. 21 , 1332–1340 (2018).

  3. K. A. Burke, E. A. Yates, J. Legleiter,Front. Neurol. 4 , 17 (2013).

  4. E. A. Yateset al.,J. Mol. Biol. 425 , 1915–1933 (2013).

  5. M. R. G. Kopp, U. Capasso Palmiero, P. Arosio,Mol. Pharm.
    17 , 909–918 (2020).

  6. C. N. Trumbore,J. Alzheimers Dis. 54 , 457–470 (2016).

  7. S. J. Roeterset al.,Sci. Rep. 7 , 41051 (2017).

  8. R. O. Weller,J. Neuropathol. Exp. Neurol. 57 , 885–894 (1998).

  9. M. Jucker, L. C. Walker,Nature 501 , 45–51 (2013).

  10. M. X. Hendersonet al.,Nat. Neurosci. 22 , 1248–1257 (2019).

  11. Z. Xuet al.,Mol. Neurodegener. 10 , 58 (2015).

  12. M. J. de Leonet al.,J. Nucl. Med. 58 , 1471–1476 (2017).

  13. S. Honget al.,Science 352 , 712–716 (2016).

  14. T. Teradaet al.,J. Neurol. 266 , 2186–2196 (2019).

  15. P. Brundin, R. Melki, R. Kopito,Nat. Rev. Mol. Cell Biol. 11 ,
    301 – 307 (2010).

  16. G. Ringstadet al.,JCI Insight 3 , e121537 (2018).

  17. G. Ringstad, S. A. S. Vatnehol, P. K. Eide,Brain 140 ,
    2691 – 2705 (2017).

  18. A. A. Davis, C. E. G. Leyns, D. M. Holtzman,Annu. Rev. Cell
    Dev. Biol. 34 , 545–568 (2018).

  19. D. S. Knopman,Neurology 90 , 447–448 (2018).

  20. S. Hoyer,Ann. N. Y. Acad. Sci. 719 , 248–256 (1994).

  21. H.P.Landolt,A.A.Borbély,Clin. Neurophysiol. 112 , 369–377 (2001).

  22. R. K. Malhotra,Sleep Med. Clin. 13 , 63–70 (2018).

  23. R. Malkani, H. Attarian,Curr. Sleep Med. Rep. 1 , 81–90 (2015).

  24. S. R. Rainey-Smithet al.,Transl. Psychiatry 8 , 47 (2018).

  25. S. M. Ulv Larsenet al.,PLOS Biol. 18 , e3000623 (2020).

  26. D. M. Zeppenfeldet al.,JAMA Neurol. 74 , 91–99 (2017).

  27. K. G. Burfeindet al.,Alzheimers Dement. 3 , 348–359 (2017).

  28. M. J. Simonet al.,Sci. Rep. 8 , 12389 (2018).

  29. D. Knopmanet al.,Neurology 56 , 42–48 (2001).

  30. E. C. Leritz, R. E. McGlinchey, I. Kellison, J. L. Rudolph,
    W. P. Milberg,Curr. Cardiovasc. Risk Rep. 5 , 407–412 (2011).

  31. M. A. I. Aberget al.,Proc. Natl. Acad. Sci. U.S.A. 106 ,
    20906 – 20911 (2009).

  32. C. R. Wendellet al.,J. Gerontol. A 69 , 455–462 (2014).

  33. K. N. Mortensenet al.,J. Neurosci. 39 , 6365–6377 (2019).

  34. Y. Xueet al.,Brain Res. Bull. 161 , 78–83 (2020).

  35. C. Gonzaga, A. Bertolami, M. Bertolami, C. Amodeo,
    D. Calhoun,J. Hum. Hypertens. 29 , 705–712 (2015).

  36. H. Mestre, S. Kostrikov, R. I. Mehta, M. Nedergaard,Clin. Sci.
    131 , 2257–2274 (2017).

  37. R. L. Vogelset al.,J. Am. Geriatr. Soc. 55 , 1764–1770 (2007).

  38. J. M. Wardlaw, C. Smith, M. Dichgans,Lancet Neurol. 18 ,
    684 – 696 (2019).

  39. C. Iadecola,Neuron 80 , 844–866 (2013).

  40. B. V. Zlokovic,Nat. Rev. Neurosci. 12 , 723–738 (2011).

  41. J. M. Wardlaw, C. Smith, M. Dichgans,Lancet Neurol. 12 ,
    483 – 497 (2013).

  42. J. M. Wardlawet al.,Nat. Rev. Neurol. 16 , 137–153 (2020).

  43. Q. Jianget al.,J. Cereb. Blood Flow Metab. 37 , 1326–1337 (2017).

  44. M. D. Sweeneyet al.,Alzheimers Dement. 15 , 158–167 (2019).

  45. H. Toda, J. A. Williams, M. Gulledge, A. Sehgal,Science 363 ,
    509 – 515 (2019).

  46. C. S. McAlpineet al.,Nature 566 , 383–387 (2019).

  47. N. Niethard, A. Burgalossi, J. Born,Front. Neural Circuits 11 , 65 (2017).

  48. R. J. Batemanet al.,Nat. Med. 12 , 856–861 (2006).

  49. J. E. Kanget al.,Science 326 , 1005–1007 (2009).

  50. J. K. Holthet al.,Science 363 , 880–884 (2019).

  51. E. Shokri-Kojoriet al.,Proc. Natl. Acad. Sci. U.S.A. 115 ,
    4483 – 4488 (2018).

  52. N. E. Fultzet al.,Science 366 , 628–631 (2019).

  53. T. Kanekiyo, C. C. Liu, M. Shinohara, J. Li, G. Bu,J. Neurosci.
    32 , 16458–16465 (2012).

  54. V. Kiviniemiet al.,J. Cereb. Blood Flow Metab. 36 , 1033–1045 (2016).

  55. S. Rius-Pérez, A. M. Tormos, S. Pérez, R. Taléns-Visconti,
    Neurologia 33 , 112–120 (2018).


ACKNOWLEDGMENTS
We thank D. Xue for assistance with illustrations and C. Cirelli
and N. Beschorner for discussions.Funding:The authors are
funded by the European Research Council under the European
Union’s Horizon 2020 research and innovation program (742112),
the Lundbeck and Novo Nordisk foundations, the Dr. Miriam and
Sheldon Adelson Medical Research Foundation, Foundation
Leducq, the National Institute of Neurological Diseases and Stroke
and the National Institute on Aging, and the U.S. Army Research
Office MURI program, grant W911NF1910280. S.A.G. is additionally
supported by Oscine Corp. and Sana Biotechnology.Competing
interests:The authors declare no relevant competing interests.


10.1126/science.abb8739


REVIEW

Beyond aggregation: Pathological phase transitions


in neurodegenerative disease


Cécile Mathieu^1 , Rohit V. Pappu2,3, J. Paul Taylor^1 *

Over the past decade, phase transitions have emerged as a fundamental mechanism of cellular
organization. In parallel, a wealth of evidence has accrued indicating that aberrations in phase
transitions are early events in the pathogenesis of several neurodegenerative diseases. We review
the key evidence of defects at multiple levels, from phase transition of individual proteins to the
dynamic behavior of complex, multicomponent condensates in neurodegeneration. We also highlight
two concepts, dynamical arrest and heterotypic buffering, that are key to understanding how
pathological phase transitions relate to pleiotropic defects in cellular functions and the accrual of
proteinaceous deposits at end-stage disease. These insights not only illuminate disease etiology
but also are likely to guide the development of therapeutic interventions to restore homeostasis.

P


roteinaceous deposits in neuronal tis-
sues have long been recognized as a
hallmark of late-onset neurodegenera-
tive diseases. Over the past 20 years,
the dominant paradigm to relate pro-
tein deposits to cellular demise has centered
on the concept of aggregation. Mechanisti-
cally, protein deposits are thought to impose
neomorphic, toxic gains of function intrinsic
to the deposited proteins, and much recent
research has been centered on the physico-
chemical nature and aggregation state of the
presumed toxic species (e.g., whether they
are monomers, oligomers, or fibrils). A wealth of
evidence has accrued in recent years leading to
an evolution of the aggregation paradigm into a
deeper and more direct understanding of how
these protein deposits arise
and relate to cellular dysfunc-
tion and death—specifically,
via pathological phase tran-
sitions. Among this additional
evidence is a deeper under-
standing of how cells are or-
ganized by phase transitions
and how they govern vital bi-
ological processes. In particu-
lar, the concept of pathological
phase transitions has arisen
from increasing recognition
that disease-associated proteins participate
in these phase transitions, and from genetic
insights demonstrating that disease-causing
mutations in these same proteins promote this
process. These advances have implications not
only for understanding gain and/or loss of
function of proteins associated with disease
but also for the biological function of the con-

densates (Box 1) to which they belong. Here,
we review these lines of evidence and synthe-
size these correlations into a framework that
seeks to draw a direct line from genetics and
biophysics to molecular mechanisms of dis-
ease and pathology. This framework is impor-
tant in defining disease etiology and is also
likely to guide the development of therapeutic
interventions to restore homeostasis.

Disease proteins undergo phase transition via
homotypic interactions
A phase transition (Box 1) is a sharp change to
one or more physical properties of a physico-
chemical system. In macromolecular solutions,
the relevant physical properties are termed
symmetries (Box 1). A disordered system has
high symmetry in that mea-
surable properties of the
system are invariant to mo-
lecular translations, rotations,
vibrations, density fluctua-
tions, and changes in con-
formation. Thus, in general
terms, phase transitions rep-
resent the breaking of one
or more symmetries. Phase
transitions abound in nature
and are particularly impor-
tant in cell biology.
A system comprising macromolecules plus
solvent can undergo a particular type of phase
transition known as phase separation (Box 1).
Beyond a system-specific threshold concen-
tration, the macromolecular solution can sepa-
rate into two coexistent phases: a dense phase
enriched in macromolecules, and a dilute phase
that is deficient in macromolecules. Of par-
ticular relevance in biological systems are
liquid-liquid phase separation (LLPS) and
liquid-to-solid phase transitions. In LLPS,
macromolecules separate from solution to
form a dense liquid phase. Pathological fibrils
that are found in late-stage neurodegenera-
tion form via liquid-to-solid phase transitions,

56 2 OCTOBER 2020•VOL 370 ISSUE 6512 sciencemag.org SCIENCE


“Pathological fibrils that


are found in late-stage


neurodegeneration


form via liquid-to-solid


phase transitions...”


(^1) Howard Hughes Medical Institute, Department of Cell and
Molecular Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA.^2 Department of Biomedical
Engineering, Washington University, St. Louis, MO 63130,
USA.^3 Center for Science and Engineering of Living Systems,
Washington University, St. Louis, MO 63130, USA.
*Corresponding author. Email: [email protected]
NEURODEGENERATION

Free download pdf