- 1 PROPERTIES OF MATTER
- 1.1 Introduction...................................
- 1.2 Testing Mechanical Properties of Materials
- 1.2.1 Tensile Test
- 1.3 Engineering Stress-Strain Diagram
- 1.3.1 True Stress and True Strain
- 1.3.2 Safety Factor
- 1.3.3 Uses of Stress-Strain Diagrams
- 1.4 Types of Elastic Moduli
- 1.4.1 Young’s Modulus
- 1.4.2 Shear Modulus (or Rigidity Modulus).................
- 1.4.3 Bulk Modulus
- 1.4.4 Poisson’s Ratio
- 1.5 Factors A ecting elasticity
- 1.6 Torsional stress and Deformations
- 1.7 Torsion pendulum................................
- sion Wire 1.7.1 Torsion Pendulum - Determination of Rigidity Modulus of Suspen-
- 1.8 Bending of Beams................................
- 1.9 Bending Moment of a Beam
- 1.10 Cantilever: Theory and Experiment......................
- 1.11 Uniform Bending and Nonuniform Bending..................
- 1.11.1 Uniform Bending: Theory and Experiment CONTENTS v
- 1.11.2 Non-uniform Bending: Theory and Experiment
- 1.12 Stress due to bending in beams
- 1.13 I-shaped Girders
- 1.14 Exercises.....................................
- Bibliography
- 2 WAVES AND FIBER OPTICS
- 2.1 Introduction...................................
- 2.2 Oscillatory Motion
- 2.2.1 SHM - Equation of Motion and its Solution
- 2.2.2 SHM and Uniform Circular Motion
- 2.2.3 SHM - Phase, Velocity and Acceleration
- 2.2.4 SHM - Kinetic and Potential Energies.................
- 2.3 Damped and Forced Oscillations........................
- 2.3.1 Damped Oscillations
- 2.3.2 Forced Oscillations and Resonance
- 2.4 Plane Progressive Waves
- 2.4.1 Di erential Equation and Solution
- 2.5 Lasers
- 2.5.1 Radiative Processes Involved in Laser Operation...........
- 2.6 Population of Energy Levels
- 2.7 Planck’s formula and Einstein’s A and B Coe cients
- 2.8 Light Amplification in Laser Devices
- 2.9 Semiconductor Laser
- 2.9.1 Homojunction Diode Laser.......................
- 2.9.2 Heterojunction Diode Laser
- 2.10 Fiber Optics - Introduction
- 2.10.1 Optical Fiber - Structure and Principle of operation.........
- 2.11 Acceptance Angle and Numerical Aperture vi CONTENTS
- 2.11.1 Propagation conditions
- 2.12 Types of Optical Fibers
- and Plastic Clad Silica Fibers 2.12.1 Classification Based on Materials: Glass-Glass Fibers, Plastic Fibers
- and Multimode Fibers 2.12.2 Classification Based on Number of Propagating Modes: Single Mode
- GRaded INdex Fibers 2.12.3 Classification Based on Refractive index profile: Step-index and and
- 2.13 Signal Distortion (Pulse Dispersion)......................
- 2.13.1 Intermodal Dispersion
- 2.13.2 Intramodal Dispersion
- 2.14 Losses Associated with Optical Fibers.....................
- 2.14.1 Absorption of Light...........................
- 2.14.2 Scattering losses.............................
- 2.14.3 Transmission Windows
- 2.14.4 Radiation losses.............................
- 2.15 Fiber Optic Sensors...............................
- 2.15.1 Fiber Optic Pressure Sensor
- 2.15.2 Fiber Optic Diplacement Sensor
- 2.16 Exercises.....................................
- Appendices
- 2.A SHM as an Example of a Deterministc Classical System
- 2.B Overdamped Oscillator - General Solution
- 2.C Critically Damped Oscillator - General Solution...............
- 2.D Driven Damped Oscillator - General Solution
- Bibliography
- 3 THERMAL PHYSICS
- 3.1 Introduction................................... CONTENTS vii
- 3.2 Thermal Expansion...............................
- 3.2.1 Thermal Expansion of Solids......................
- 3.2.2 Thermal Expansion of Liquids
- 3.2.3 Negative Thermal Expansion
- 3.2.4 Bimetallic Strip
- 3.2.5 Thermal Expansion Joints
- 3.3 Modes of Heat Transfer.............................
- 3.4 Heat Conduction in Solids - Fourier’s Law
- 3.4.1 Thermal Resistance...........................
- 3.5 Conduction Through Compound Media....................
- 3.5.1 Compound Medium - Materials in Series
- 3.5.2 Compound Medium - Materials in Parallel
- 3.5.3 Compound Medium - Materials in Series-parallel combination
- 3.6 Methods of Thermal Conductivity Measurement
- 3.6.1 Lee’s Disc Method
- 3.6.2 Forbes’ Method
- 3.7 Thermal Insulation
- 3.8 Heat Exchangers
- 3.8.1 Refrigerator
- 3.8.2 Ovens
- 3.8.3 Solar Water Heaters
- 3.9 Exercises.....................................
- Bibliography
- 4 QUANTUM PHYSICS
- 4.1 Introduction...................................
- 4.2 Blackbody Radiation
- 4.2.1 Blackbody Radiation - Experimental Results
- 4.3 Planck’s Theory of Blackbody Radiation viii CONTENTS
- 4.4 Compton E ect
- 4.5 wave particle duality – electron di raction
- 4.5.1 Characteristics of matter waves
- 4.6 Concept of Wave Function and Its Interpretation
- 4.7 Schrödinger’s Wave Equation
- 4.7.1 Time-Dependent Schrödinger Equation
- 4.7.2 Time-Independent Schrödinger Equation
- 4.8 Particle in a One-dimensional Rigid Box
- 4.9 Tunnelling (qualitative).............................
- 4.10 Electron Microscope
- 4.10.1 Scanning Tunnelling Microscope
- Appendices
- 4.A Origin and Evolution of the Idea of Blackbody
- 4.B Expression of the Number of Standing Waves in a Cavity
- 4.3 Exercises.....................................
- Bibliography
- 5 CRYSTAL PHYSICS
- 5.1 Introduction...................................
- 5.1.1 Construction of a 3-dimensional (3-D) lattice
- 5.2 Close-Packing and Atomic Packing factor (APF)...............
- 5.3 Diamond Structure
- 5.4 Crystallographic Directions& Planes
- 5.4.1 Inter-planar Spacing
- 5.5 Crystal Imperfections..............................
- 5.5.1 Point Defects
- 5.5.2 Stacking faults
- 5.1 Introduction...................................
achs6699
(achs6699)
#1