Science - USA (2020-09-25)

(Antfer) #1

  1. T. W. Pietsch,Ichthyol. Res. 52 , 207–236 (2005).

  2. C.T.Regan,Proc.R.Soc.LondonSer.B 97 , 386– 400
    (1925).

  3. O. Munk, E. Bertelsen,Videnskabelige Meddelelser fra dansk
    naturhistorisk Forening. 144 , 49–74 (1983).

  4. O. Munk,Acta Zoologica 81 , 315–324 (2001).

  5. T. W. Pietsch,Copeia 1976 , 781 (1976).

  6. N. W. Nisbet,Transplant. Rev. 15 , 123–161 (1973).

  7. K. E. Lunsford, A. S. Barbas, T. V. Brennan,Curr. Opin. Organ
    Transplant. 16 , 390–397 (2011).

  8. R. J. Duquesnoy,Curr. Opin. Organ Transplant. 19 , 428– 435
    (2014).

  9. T. Leinders-Zufallet al.,Science 306 , 1033– 1037
    (2004).

  10. M. Milinskiet al.,Proc. Natl. Acad. Sci. U.S.A. 102 , 4414– 4418
    (2005).

  11. F. Colucci,Science 365 , 862–863 (2019).

  12. M. Miyaet al.,BMC Evol. Biol. 10 , 58 (2010).

  13. U. Grimholt,Biology 5 , 6 (2016).

  14. P. N. Rocha, T. J. Plumb, S. D. Crowley, T. M. Coffman,
    Immunol. Rev. 196 , 51–64 (2003).

  15. S. Rangarajan, R. A. Mariuzza,Cell. Mol. Life Sci. 71 ,
    3059 – 3068 (2014).

  16. K. J. Lainget al.,J. Immunol. 177 , 3939–3951 (2006).

  17. B. Stockingeret al.,Cell 56 , 683–689 (1989).

  18. D. Donget al.,Nature 573 , 546–552 (2019).

  19. S. V. Guselnikov, A. M. Najakshin, A. V. Taranin,
    Immunogenetics 55 , 472–479 (2003).

  20. A. Alcover, B. Alarcón, V. Di Bartolo,Annu. Rev. Immunol. 36 ,
    103 – 125 (2018).

  21. A. Fischer, G. de Saint Basile, F. Le Deist,Curr. Opin. Allergy
    Clin. Immunol. 5 , 491–495 (2005).

  22. A. Morettaet al.,Annu. Rev. Immunol. 19 , 197–223 (2001).

  23. A. Loupy, C. Lefaucheur,N. Engl. J. Med. 379 , 1150– 1160
    (2018).

  24. M. R. Gold, M. G. Reth,Annu. Rev. Immunol. 37 , 97–123 (2019).

  25. M. Chhabraet al.,Front. Immunol. 9 , 3038 (2019).

  26. M. Muramatsuet al.,Cell 102 , 553–563 (2000).

  27. A. Krishnan, L. M. Iyer, S. J. Holland, T. Boehm, L. Aravind,
    Proc. Natl. Acad. Sci. U.S.A. 115 , E3201–E3210 (2018).

  28. T. Nakanishiet al.,Transplantation 99 , 1598– 1605
    (2015).

  29. M. D. Cooper, M. N. Alder,Cell 124 , 815–822 (2006).

  30. T. Boehm,Nat. Rev. Immunol. 11 , 307–317 (2011).

  31. T. Boehm,Curr. Biol. 22 , R722–R732 (2012).

  32. T. Boehm, J. B. Swann,Annu. Rev. Anim. Biosci. 2 , 259– 283
    (2014).

  33. A. Fischer, A. Rausell,Semin. Immunol. 36 , 13–16 (2018).

  34. G. Teng, D. G. Schatz,Adv. Immunol. 128 ,1–39 (2015).

  35. C. A. Reynaud, A. Dahan, V. Anquez, J. C. Weill,Cell 59 ,
    171 – 183 (1989).

  36. R. Morimotoet al.,Sci. Immunol. 5 , eaba0925 (2020).

  37. T. Boehmet al.,Annu. Rev. Immunol. 36 , 19– 42
    (2018).

  38. C. G. Hencken, X. Li, N. L. Craig,Nat. Struct. Mol. Biol. 19 ,
    834 – 836 (2012).

  39. L. M. Carmona, S. D. Fugmann, D. G. Schatz,Genes Dev. 30 ,
    909 – 917 (2016).

  40. T. W. Pietsch, J. W. Orr,Copeia 2007 ,1–34 (2007).

  41. L. C. Hugheset al.,Proc. Natl. Acad. Sci. U.S.A. 115 ,
    6249 – 6254 (2018).

  42. B. Staret al.,Nature 477 , 207–210 (2011).

  43. A. Dubin, T. E. Jørgensen, T. Moum, S. D. Johansen, L. M. Jakt,
    Biol. Lett. 15 , 20190594 (2019).

  44. D. Haaseet al.,Biol. Lett. 9 , 20130044 (2013).

  45. O. Rothet al.,Proc. Natl. Acad. Sci. U.S.A. 117 , 9431– 9439
    (2020).

  46. S. Sunagawaet al.,Science 348 , 1261359 (2015).

  47. M. A. Freemanet al.,J. Fish Dis. 34 , 445–452 (2011).

  48. E. Vivieret al.,Science 331 , 44–49 (2011).

  49. Y. Tokunagaet al.,Sci. Rep. 7 , 7536–10 (2017).

  50. J. B. Swann, S. J. Holland, M. Petersen, T. W. Pietsch,
    T. Boehm, Data for: The immunogenics of sexual parasitism,
    Zenodo (2020); https://dx.doi.org/10.5281/zenodo.3835870.


ACKNOWLEDGMENTS
We thank R. J. Arnold, A. Graham, K. E. Hartel, A. Hay,
C. P. Kenaley, M. Miya, J. W. Orr, A. Stewart, and T. T. Sutton
for providing tissue samples; K. P. Maslenikov for curatorial
assistance; and L. Gerri, F. Mateos, and the MPIIE deep sequencing
and bioinformatics units for their help with genome sequencing.
Special thanks are extended to E. Widder for allowing us to
reproduce her photograph ofM. johnsonii.Funding:This work


was supported by the Max Planck Society, the Ernst Jung
Foundation for Science and Medicine, the European Research
Council (ERC) under the European Union’s Seventh Framework
Programme (FP7/2007-2013), ERC grant agreement 323126,
and U.S. National Science Foundation grant DEB 03-14637.
Author contributions:J.B.S., T.W.P., and T.B. designed research;
T.W.P. provided tissue samples; J.B.S., S.J.H., and T.B. performed
research; J.B.S., S.J.H., M.P., T.W.P., and T.B. analyzed and
interpreted data; and T.W.P. and T.B. wrote the paper with input
from all other authors.Competing interests:The authors have
no competing interests.Data and materials availability:The
data reported in this paper have been deposited in the NCBI
Sequence Read Archive (SRA) database (individual accession
numbers for BioProject ID PRJNA578585 are listed in table S1)
and the GenBank database (accession numbers listed in
table S5). Alignments of the 946 exon loci that were used to
reconstruct the anglerfish phylogeny are available at Zenodo

( 53 ). All other data are available in the manuscript or the
supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/369/6511/1608/suppl/DC1
Materials and Methods
Figs. S1 to S53
Tables S1 to S8
References ( 54 – 80 )
MDAR Reproducibility Checklist
Data S1

22 October 2019; accepted 17 July 2020
Published online 30 July 2020
10.1126/science.aaz9445

REPORTS



SOLAR CELLS

Stable perovskite solar cells with efficiency


exceeding 24.8% and 0.3-V voltage loss


Mingyu Jeong^1 *, In Woo Choi2,3*, Eun Min Go^4 *, Yongjoon Cho^1 , Minjin Kim^2 , Byongkyu Lee^1 ,
Seonghun Jeong^1 , Yimhyun Jo^2 , Hye Won Choi^2 , Jiyun Lee^4 , Jin-Hyuk Bae^3 , Sang Kyu Kwak^4 †,
Dong Suk Kim^2 †, Changduk Yang^1 †

Further improvement and stabilization of perovskite solar cell (PSC) performance are essential to
achieve the commercial viability of next-generation photovoltaics. Considering the benefits of
fluorination to conjugated materials for energy levels, hydrophobicity, and noncovalent interactions, two
fluorinated isomeric analogs of the well-known hole-transporting material (HTM) Spiro-OMeTAD are
developed and used as HTMs in PSCs. The structure–property relationship induced by constitutional
isomerism is investigated through experimental, atomistic, and theoretical analyses, and the fabricated
PSCs feature high efficiency up to 24.82% (certified at 24.64% with 0.3-volt voltage loss), along
with long-term stability in wet conditions without encapsulation (87% efficiency retention after
500 hours). We also achieve an efficiency of 22.31% in the large-area cell.

T


o achieve better and cheaper alterna-
tive energy, perovskite solar cells (PSCs)
have been the front runner among emerg-
ing next-generation solar cells. Power
conversion efficiency (PCE) exceeding
25% ( 1 ) has been achieved in laboratory-scale
PSCs by improving the perovskite material
formulations ( 2 – 5 ), the device fabrication rou-
tines ( 6 – 9 ), and the high-quality film-formation
methodologies ( 10 – 12 ) on the basis of a com-
prehensive understanding of the charge dynamics
at the interfacial layers. Most high-performance

PSCs have a sandwich structure composed of
a perovskite absorber between a metal oxide–
based electron-transporting material (ETM) and
an organic hole-transporting material (HTM)
( 3 , 7 , 13 , 14 ). Because high-quality perovskite
and ETMs can be obtained from various pro-
cessing methodologies, HTMs are considered
to be fundamentally important in further im-
proving PSC performance. Despite efforts to
develop better HTMs to replace Spiro-OMeTAD
[2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-
9,9′-spirobifluorene] ( 15 – 17 ), this compound,
which was developed by Grätzelet al. for solid-
state dye-sensitized solar cells more than two
decades ago ( 18 ), is still recognized as the most
efficient HTM in PSCs owing to its amor-
phous nature, high compatibility with dop-
ants, and energy levels matching those of
perovskite. However, it must be chemically
doped with hygroscopic dopants to attain
efficient hole extraction and sufficient con-
ductivity. Such doping negatively influences
the stability of ambient PSCs, thus present-
ing a major obstacle to truly commercializing

SCIENCEsciencemag.org 25 SEPTEMBER 2020•VOL 369 ISSUE 6511 1615


(^1) Department of Energy Engineering, School of Energy and
Chemical Engineering, Perovtronics Research Center, Low
Dimensional Carbon Materials Center, Ulsan National
Institute of Science and Technology (UNIST), Ulju-gun, Ulsan
44919, Republic of Korea.^2 Ulsan Advanced Energy
Technology R&D Center, Korea Institute of Energy Research,
Nam-gu, Ulsan 44776, Republic of Korea.^3 School of
Electronics Engineering, Kyungpook National University,
Daegu 41566, Republic of Korea.^4 Department of Energy
Engineering, School of Energy and Chemical Engineering,
Ulsan National Institute of Science and Technology (UNIST),
Ulsan 44919, Republic of Korea.
*These authors contributed equally to this work.
†Corresponding author. Email: [email protected] (C.Y.); kimds@kier.
re.kr (D.S.K.); [email protected] (S.K.K.)
RESEARCH

Free download pdf