In△XAMand△ZCO
XAM^ =ZCO^ (given:△CDZ△ABX)
AXM^ =CZO^ (proved above)
AX =CZ (proved above)
)△XAM △ZCO (AAS)
)M^ 1 =O^ 1
butM^ 1 =M^ 2 (vert opp\s=)
andO^ 1 =O^ 2 (vert opp\s=)
)M^ 2 =O^ 2
Step 3: Similarly, we can show thatN^ 2 =P^ 2
First show△ADW△CBY. Then show△P DW△N BY.
Step 4: Conclusion
Both pairs of opposite angles ofM N OPare equal. ThereforeM N OPis a parallelogram.
VISIT:
This video shows how to prove that the opposite angles of a parallelogram are equal.
See video:2GQNatwww.everythingmaths.co.za
Exercise 12 – 1:
1.In the diagram below,ACandEFbisect each other atG.Eis the midpoint ofAD, andFis the midpoint
ofBC.
a)ProveAECFis a parallelogram.
A
B C
E D
F
:
b)ProveABCDis a parallelogram.
2.ParallelogramABCDandBEF Care shown below. ProveAD=EF.
6
C
.
"
1
3.In the diagram belowP QRSis a parallelogram withP Q=T Q. ProveQ^ 1 =R^
Chapter 12. Euclidean geometry 405