5.Dis a point onBC, in△ABC. Nis the mid-point ofAD.Ois the mid-point ofABandMis the
mid-point ofBD.N R∥AC.
B
O
C
N
A
D
M
R
a)Prove thatOBM Nis a parallelogram.
b)Prove thatBC= 2M R.
6.In△M N P,M^= 90°,Sis the mid-point ofM NandTis the mid-point ofN R.
M
T
N U P
S
R
a)ProveUis the mid-point ofN P.
b)IfST=4 cm and the area of△SN Tis 6 cm^2 , calculate the area of△M N R.
c)Prove that the area of△M N Rwill always be four times the area of△SN T, letST=xunits and
SN=yunits.
- a)Given quadrilateralQRSTwith sidesQR∥T SandQT∥RS. Also given:Q^=yandS^= 63◦;
QT R^ = 38◦andRT S^ =x. Complete the proof below to prove thatQRSTis a parallelogram.
Q
R S
T
y
63 ◦
x
38 ◦
Steps Reasons
QT R^ =TRS^ alt\s;QT∥RS
ST R^ =QRT^ alt\s;QR∥T S
??
)△QRT△ST R (AAS)
? congruent triangles
Q^=S^ congruent triangles
)QRSTis a parallelogram?
b)Calculate the value ofy.
c)Calculate the value ofx.
Chapter 12. Euclidean geometry 411