8.Study the quadrilateralQRSTwith opposite anglesQ^=S^= 117◦and anglesR^=T^= 63◦carefully.
Fill in the correct reasons or steps to prove that the quadrilateralQRSTis a parallelogram.
117 ◦
117 ◦
63 ◦
63 ◦
Q
R S
T
Steps Reasons
? given both\s= 117◦
QRS^ =QT S^ given both\s= 63◦
? sum of\s in quad
RQT^ +QT S^ = 180◦ 117 ◦+ 63◦= 180◦
)QR∥T S co-int\s;QR∥T S
)RS∥QT?
)QRSTis a parallelogram?
9.Study the quadrilateralQRSTwithQ^=S^= 149◦andR^=T^= 31◦carefully. Fill in the correct reasons
or steps to prove that the quadrilateralQRSTis a parallelogram.
149 ◦
149 ◦
31 ◦
31 ◦
Q
R S
T
Steps Reasons
RQT^ =RST^ given both\s= 149◦
QRS^ =QT S^?
Q^+R^+S^+T^= 360◦ sum of\s in quad
RQT^ +QT S^ = 180◦?
? co-int\s;QR∥T S
? co-int\s;RS∥QT
)QRSTis a parallelogram opp. sides are parallel
10.In parallelogramQT RS, the bisectors of the angles have been constructed, indicated with the red lines
below. You are also givenQT=SR,T R=QS,QT∥SR,T R∥QS,Q^=R^andT^=S^.
Prove that the quadrilateralJKLMis a parallelogram.
Note the diagram is drawn to scale.
412 12.2. Chapter summary