SOLUTION
Step 1: Change the bases to prime numbers
9 x 1
3 x+ 1
=
(
32
)x
1
3 x+ 1
=
32 x 1
3 x+ 1
Recognise that 32 x= (3x)^2
Step 2: Factorise using the difference of squares
=
(3x 1) (3x+ 1)
3 x+ 1
Step 3: Cancel the common factor and simplify
= 3x 1
Exercise 2 – 1:
Simplify without using a calculator:
- 160 2. 16 a^0 3. 119 x 112 x
- 106 x 102 x 5. ( 6 c)^3 6. ( 5 n)^3
7.
2 ^2
32
8.
5
2 ^3
9.
(
2
3
) 3
10.
a^2
a ^1
11.
xy ^3
x^4 y
- x^2 x^3 t+1
- 3 32 a 32 14.
2 m+20
2 m+20
15.
2 x+4
2 x+3
- (2a^4 )(3ab^2 ) 17.(7m^4 n)(8m^6 n^8 ) 18.2( a^7 b^8 )( 4 a^3 b^6 )( 9 a^6 b^2 )
- ( 9 x^3 y^6 )
(
1
9
x^8 y^7
) (
1
5
x^3 y^6
)
20.
a^3 x
ax
21.
20 x^10 a^4
4 x^9 a^3
- 18 c^10 p^8
9 c^6 p^5
23.
6 m^8 a^10
2 m^3 a^5
24. 312 39
25.
7(a^3 )^3
a^7
26.
9(ab^4 )^8
a^3 b^5
27.
22
62
28.
(
a^6
b^7
) 5
29.
(
2 t^4
) 3
30.
(
3 n+3
) 2
31.
3 n 9 n ^3
27 n ^1
32.
13 c+ 13 c+2
3 13 c 13 c
33.
35 x 815 x 33
98 x
Chapter 2. Exponents 49