34.
16 x 144 b
4 x 12 b
35.
52 y ^324 y+4
10 ^5 y+5
36.
64 123 45
303 36
37.
93 202
4 52 35
38.
7 b+ 7b ^2
4 7 b+ 3 7 b
39.
12 y 96 y
3 y+ 6y
For more exercises, visit http://www.everythingmaths.co.za and click on ’Practise Maths’.
1.2DZG 2.2DZH 3.2DZJ 4.2DZK 5.2DZM 6.2DZN 7.2DZP 8.2DZQ
9.2DZR 10.2DZS 11.2DZT 12.2DZV 13.2DZW 14.2DZX 15.2DZY 16.2DZZ
17.2F22 18.2F23 19.2F24 20.2F25 21.2F26 22.2F27 23.2F28 24.2F29
25.2F2B 26.2F2C 27.2F2D 28.2F2F 29.2F2G 30.2F2H 31.2F2J 32.2F2K
33.2F2M 34.2F2N 35.2F2P 36.2F2Q 37.2F2R 38.2F2S 39.2F2T
http://www.everythingmaths.co.za m.everythingmaths.co.za
2.3 Rational exponents EMAV
We can also apply the exponent laws to expressions with rational exponents.
Worked example 6: Simplifying rational exponents
QUESTION
Simplify:
2 x
(^12)
4 x
(^12)
SOLUTION
2 x
(^12)
4 x
(^12)
= 8x
(^12) (^12)
= 8x^0
= 8 (1)
= 8
Worked example 7: Simplifying rational exponents
QUESTION
Simplify:
(0,008)
(^13)
50 2.3. Rational exponents