13.2 CHAPTER 13. EXPONENTIAL FUNCTIONS AND GRAPHS
(c) y = 2. 2 x
(d) y = 2. 2 x+2+ 2
- Draw the graph of f(x) = 3x.
- Explain where a solution of 3 x= 5 can be read off the graph.
More practice video solutions or help at http://www.everythingmaths.co.za
(1.) 01zf (2.) 01zg (3.) 01zh
Chapter 13 End of Chapter Exercises
- The following table of values has columns giving the y-values for the graph y = ax,
y = ax+1and y = ax+ 1. Match a graph to a column.
x A B C
− 2 7 , 25 6 , 25 2 , 5
− 1 3 , 5 2 , 5 1
0 2 1 0 , 4
1 1 , 4 0 , 4 0 , 16
2 1 , 16 0 , 16 0 , 064 - The graph of f(x) = 1 + a. 2 x(a is a constant) passes through the origin.
(a) Determine the valueof a.
(b) Determine the valueof f(−15) correct to five decimalplaces.
(c) Determine the valueof x, if P(x;0,5) lies on the graph of f.
(d) If the graph of f is shifted 2 units to the right to givethe function h, write down
the equation of h. - The graph of f(x) = a.bx(a�= 0) has the point P(2;144) on f.
(a) If b = 0, 75 , calculate the value of a.
(b) Hence write down the equation of f.
(c) Determine, correct to two decimal places, the value of f(13).
(d) Describe the transformation of the curve of f to h if h(x) = f(−x).
More practice video solutions or help at http://www.everythingmaths.co.za