Everything Maths Grade 11

(Marvins-Underground-K-12) #1

CHAPTER 16. GEOMETRY 16.4


Given:�ABC withAˆ = 90◦


1

2

A

B C
D

2

1

R.T.P.: BC^2 = AB^2 + AC^2


Proof:


LetCˆ = x
∴ DACˆ = 90◦− x (∠’s of a� )
∴ DABˆ = x
ABDˆ = 90◦− x (∠’s of a� )
BDAˆ = CDAˆ =Aˆ = 90◦

∴�ABD|||�CBA and�CAD|||�CBA (AAA)


AB


CB


=


BD


BA


=



AD


CA



and

CA


CB


=


CD


CA


=



AD


BA



∴ AB^2 = CB× BD and AC^2 = CB× CD

∴ AB^2 + AC^2 = CB(BD + CD)


= CB(CB)


= CB^2


i.e. BC^2 = AB^2 + AC^2
Free download pdf