CHAPTER 16. GEOMETRY 16.4
Given:�ABC withAˆ = 90◦
1
2
A
B C
D
2
1
R.T.P.: BC^2 = AB^2 + AC^2
Proof:
LetCˆ = x
∴ DACˆ = 90◦− x (∠’s of a� )
∴ DABˆ = x
ABDˆ = 90◦− x (∠’s of a� )
BDAˆ = CDAˆ =Aˆ = 90◦
∴�ABD|||�CBA and�CAD|||�CBA (AAA)
∴
AB
CB
=
BD
BA
=
�
AD
CA
�
and
CA
CB
=
CD
CA
=
�
AD
BA
�
∴ AB^2 = CB× BD and AC^2 = CB× CD
∴ AB^2 + AC^2 = CB(BD + CD)
= CB(CB)
= CB^2
i.e. BC^2 = AB^2 + AC^2