Everything Maths Grade 11

(Marvins-Underground-K-12) #1

17.3 CHAPTER 17. TRIGONOMETRY


SOLUTION

LHS =


1 − sin x
cos x
=

1 − sin x
cos x

×


1 + sin x
1 + sin x

=
1 − sin^2 x
cos x(1 + sin x)

=

cos^2 x
cos x(1 + sin x)
=

cos x
1 + sin x

= RHS


Exercise 17 - 8



  1. Simplify the following using the fundamentaltrigonometric identities:


(a) tancos θ θ
(b) cos^2 θ.tan^2 θ + tan^2 θ.sin^2 θ

(c) 1 − tan^2 θ.sin^2 θ

(d) 1 − sin θ.cos θ.tan θ

(e) 1 − sin^2 θ

(f)


1 −cos^2 θ
cos^2 θ


− cos^2 θ


  1. Prove the following:


(a) 1+sincos θ θ= 1 −cossin θ θ

(b) sin^2 θ + (cos θ− tan θ)(cos θ + tan θ) = 1− tan^2 θ

(c) (2cos

(^2) θ−1)
1 +
1
(1+tan^2 θ)=
2 −tan^2 θ
1+tan^2 θ
(d)cos^1 θ−cos θtan
(^2) θ
1 = cos θ
(e)2sinsin θ θ+coscos θ θ= sin θ + cos θ−sin θ+cos^1 θ
(f)
�cos θ
sin θ+ tan θ



. cos θ =sin^1 θ


More practice video solutions or help at http://www.everythingmaths.co.za

(1.) 014g (2.) 014h

Free download pdf