17.3 CHAPTER 17. TRIGONOMETRY
SOLUTION
- cos50◦= sin(90◦− 50 ◦) = sin40◦
- sin320◦= sin(360◦− 40 ◦) =−sin40◦
- cos230◦= cos(180◦+ 50◦) =−cos50◦
=−sin(90◦− 50 ◦) =−sin40◦
Function Values of (θ− 90 ◦)
sin(θ− 90 ◦) =−cos θ and cos(θ− 90 ◦) = sin θ.
These results may be proved as follows:
sin(θ− 90 ◦) = sin[−(90◦− θ)]
=−sin(90◦− θ)
=−cos θ
similarly, cos(θ− 90 ◦) = sin θ
Summary
The following summarymay be made
second quadrant (180◦− θ) or (90◦+ θ) first quadrant (θ) or (90◦− θ)
sin(180◦− θ) = +sin θ all trig functions are positive
cos(180◦− θ) =−cos θ sin(360◦+ θ) = sin θ
tan(180◦− θ) =−tan θ cos(360◦+ θ) = cos θ
sin(90◦+ θ) = +cos θ tan(360◦+ θ) = tan θ
cos(90◦+ θ) =−sin θ sin(90◦− θ) = sin θ
cos(90◦− θ) = cos θ
third quadrant (180◦+ θ) fourth quadrant (360◦− θ)
sin(180◦+ θ) =−sin θ sin(360◦− θ) =−sin θ
cos(180◦+ θ) =−cos θ cos(360◦− θ) = +cos θ
tan(180◦+ θ) = +tan θ tan(360◦− θ) =−tan θ
Tip
- These reduction
formulae hold
for any angleθ.
For convenience,
we usually work
withθ as if it
is acute, i.e.
0 ◦<θ< 90 ◦. - When determin-
ing function val-
ues of 180 ◦±
θ, 360 ◦±θ and
−θ the functions
never change. - When determin-
ing function val-
ues of 90 ◦±θ
andθ− 90 ◦the
functions changes
to its co-function
(co-co rule).
Extension: Function Values of(270
◦±θ)
Angles in the third andfourth quadrants may be written as 270 ◦± θ with θ an acute angle.
Similar rules to the above apply. We get
third quadrant (270◦− θ) fourth quadrant (270◦+ θ)
sin(270◦− θ) =−cos θ sin(270◦+ θ) =−cos θ
cos(270◦− θ) =−sin θ cos(270◦+ θ) = +sin θ