Everything Maths Grade 11

(Marvins-Underground-K-12) #1

17.3 CHAPTER 17. TRIGONOMETRY


SOLUTION


  1. cos50◦= sin(90◦− 50 ◦) = sin40◦

  2. sin320◦= sin(360◦− 40 ◦) =−sin40◦

  3. cos230◦= cos(180◦+ 50◦) =−cos50◦
    =−sin(90◦− 50 ◦) =−sin40◦


Function Values of (θ− 90 ◦)

sin(θ− 90 ◦) =−cos θ and cos(θ− 90 ◦) = sin θ.
These results may be proved as follows:

sin(θ− 90 ◦) = sin[−(90◦− θ)]
=−sin(90◦− θ)
=−cos θ

similarly, cos(θ− 90 ◦) = sin θ

Summary

The following summarymay be made

second quadrant (180◦− θ) or (90◦+ θ) first quadrant (θ) or (90◦− θ)
sin(180◦− θ) = +sin θ all trig functions are positive
cos(180◦− θ) =−cos θ sin(360◦+ θ) = sin θ
tan(180◦− θ) =−tan θ cos(360◦+ θ) = cos θ
sin(90◦+ θ) = +cos θ tan(360◦+ θ) = tan θ
cos(90◦+ θ) =−sin θ sin(90◦− θ) = sin θ
cos(90◦− θ) = cos θ
third quadrant (180◦+ θ) fourth quadrant (360◦− θ)
sin(180◦+ θ) =−sin θ sin(360◦− θ) =−sin θ
cos(180◦+ θ) =−cos θ cos(360◦− θ) = +cos θ
tan(180◦+ θ) = +tan θ tan(360◦− θ) =−tan θ

Tip



  1. These reduction
    formulae hold
    for any angleθ.
    For convenience,
    we usually work
    withθ as if it
    is acute, i.e.
    0 ◦<θ< 90 ◦.

  2. When determin-
    ing function val-
    ues of 180 ◦±
    θ, 360 ◦±θ and
    −θ the functions
    never change.

  3. When determin-
    ing function val-
    ues of 90 ◦±θ
    andθ− 90 ◦the
    functions changes
    to its co-function
    (co-co rule).


Extension: Function Values of(270
◦±θ)

Angles in the third andfourth quadrants may be written as 270 ◦± θ with θ an acute angle.
Similar rules to the above apply. We get
third quadrant (270◦− θ) fourth quadrant (270◦+ θ)
sin(270◦− θ) =−cos θ sin(270◦+ θ) =−cos θ
cos(270◦− θ) =−sin θ cos(270◦+ θ) = +sin θ
Free download pdf