CHAPTER 5. QUADRATIC SEQUENCES 5.2
(h) 3;9;15;21;27;...
(i) 10;24;44;70;102;...
(j) 1;2,5;5;8,5;13;...
(k) 2 ,5;6;10,5;16;22,5;...
(l) 0 ,5;9;20,5;35;52,5;...
- Given Tn= 2n^2 , find for which value of n, Tn= 242
- Given Tn= (nā 4)^2 , find for which value of n, Tn= 36
- Given Tn= n^2 + 4, find for which value of n, Tn= 85
- Given Tn= 3n^2 , find T 11
- Given Tn= 7n^2 + 4n, find T 9
- Given Tn= 4n^2 + 3nā 1 , find T 5
- Given Tn= 1, 5 n^2 , find T 10
- For each of the quadratic sequences, find thecommon second difference, the formula
for the general term andthen use the formula tofind a 100.
(a) 4;7;12;19;28;...
(b) 2;8;18;32;50;...
(c) 7;13;23;37;55;...
(d) 5;14;29;50;77;...
(e) 7;22;47;82;127;...
(f) 3;10;21;36;55;...
(g) 3;7;13;21;31;...
(h) 3;9;17;27;39;...
More practice video solutions or help at http://www.everythingmaths.co.za
(1.) 0177 (2.) 0178 (3.) 0179 (4.) 017a (5.) 017b (6.) 017c
(7.) 017d (8.) 017e (9.) 017f (10.) 017g