CHAPTER 10. TRIGONOMETRY 10.2
1
1
x
y
a
b
�
�
�
(α−β)
α β
L(a;b)
K(x;y)
O M (x;y)
We can get the coordinates of L and K in terms of the angles α and β. For the triangle LOM , we have
that
sinβ =
b
1
=⇒ b = sinβ
cosβ =
a
1
=⇒ a = cosβ
Thus the coordinates of L are (cosβ; sinβ). In the same way as above, we can see that the coordinates
of K are (cosα; sinα). The identity for cos(α−β) is now determined by calculating KL^2 in two ways.
Using the distance formula (i.e. d =
�
(x 2 −x 1 )^2 + (y 2 −y 1 )^2 or d^2 = (x 2 −x 1 )^2 + (y 2 −y 1 )^2 ), we
can find KL^2 :
KL^2 = (cosα− cosβ)^2 + (sinα− sinβ)^2
= cos^2 α− 2 cosα cosβ + cos^2 β + sin^2 α− 2 sinα sinβ + sin^2 β
= (cos^2 α + sin^2 α) + (cos^2 β + sin^2 β)− 2 cosα cosβ− 2 sinα sinβ
= 1 + 1− 2(cosα cosβ + sinα sinβ)
= 2− 2(cosα cosβ + sinα sinβ)
The second way we candetermine KL^2 is by using the cosine rule for�KOL:
KL^2 = KO^2 +LO^2 − 2 .KO.LO. cos(α−β)
= 1^2 + 1^2 − 2(1)(1) cos(α−β)
= 2− 2. cos(α−β)
Equating our two valuesfor KL^2 , we have
2 − 2. cos(α−β) = 2− 2(cosα cosβ + sinα. sinβ)
=⇒ cos(α−β) = cosα. cosβ + sinα. sinβ
Now let α→ 90 ◦−α. Then
cos(90◦−α−β) = cos(90◦−α) cosβ + sin(90◦−α) sinβ
= sinα. cosβ + cosα. sinβ
But cos(90◦− (α +β)) = sin(α +β). Thus
sin(α +β) = sinα. cosβ + cosα. sinβ