Everything Maths Grade 12

(Marvins-Underground-K-12) #1

10.2 CHAPTER 10. TRIGONOMETRY


Derivation ofsin(α−β) EMCCH


We can use
sin(α +β) = sinα cosβ + cosα sinβ


to show that
sin(α−β) = sinα cosβ− cosα sinβ


We know that
sin(−θ) =− sin(θ)


and
cos(−θ) = cosθ


Therefore,


sin(α−β) = sin(α + (−β))
= sinα cos(−β) + cosα sin(−β)
= sinα cosβ− cosα sinβ

Derivation ofcos(α+β) EMCCI


We can use
sin(α−β) = sinα cosβ− sinβ cosα


to show that
cos(α +β) = cosα cosβ− sinα sinβ


We know that
sin(θ) = cos(90−θ).


Therefore,


cos(α +β) = sin(90− (α +β))
= sin((90−α)−β))
= sin(90−α) cosβ− sinβ cos(90−α)
= cosα cosβ− sinβ sinα

Derivation ofcos(α−β) EMCCJ


We found this identity inour derivation of the sin(α +β) identity. We can also use the fact that


sin(α +β) = sinα cosβ + cosα sinβ

to derive that
cos(α−β) = cosα cosβ + sinα sinβ


As
cos(θ) = sin(90−θ),

Free download pdf