Everything Maths Grade 12

(Marvins-Underground-K-12) #1

CHAPTER 10. TRIGONOMETRY 10.2


Example 2: Trigonometric Identities 2


QUESTION

Deduce a formula for tan(α +β) in terms of tanα and tanβ.
Hint: Use the formulaefor sin(α +β) and cos(α +β)

SOLUTION

Step 1 : Identify a strategy
We can express tan(α + β) in terms of cosines and sines, and then use the
double-angle formulae for these. We then manipulate the resulting expression in
order to get it in terms of tanα and tanβ.

Step 2 : Execute strategy

tan(α +β) =
sin(α +β)
cos(α +β)

=
sinα. cosβ + cosα. sinβ
cosα. cosβ− sinα. sinβ

=

sin α .cos β
cos α .cos β+

cos α .sin β
cos α .cos β
cos α .cos β
cos α .cos β−

sin α .sin β
cos α .cos β

=
tanα + tanβ
1 − tanα. tanβ

Example 3: Trigonometric Identities 3


QUESTION

Prove that
sinθ + sin 2θ
1 + cosθ + cos 2θ

= tanθ

In fact, this identity is not valid for all values of θ. Which values are those?

SOLUTION

Step 1 : Identify a strategy
The right-hand side (RHS) of the identity cannotbe simplified. Thus weshould
try simplify the left-handside (LHS). We can alsonotice that the trig function on
the RHS does not havea 2 θ dependence. Thus wewill need to use the double-
angle formulae to simplify the sin 2θ and cos 2θ on the LHS. We knowthat tanθ
Free download pdf