CHAPTER 10. TRIGONOMETRY 10.2
Example 2: Trigonometric Identities 2
QUESTION
Deduce a formula for tan(α +β) in terms of tanα and tanβ.
Hint: Use the formulaefor sin(α +β) and cos(α +β)
SOLUTION
Step 1 : Identify a strategy
We can express tan(α + β) in terms of cosines and sines, and then use the
double-angle formulae for these. We then manipulate the resulting expression in
order to get it in terms of tanα and tanβ.
Step 2 : Execute strategy
tan(α +β) =
sin(α +β)
cos(α +β)
=
sinα. cosβ + cosα. sinβ
cosα. cosβ− sinα. sinβ
=
sin α .cos β
cos α .cos β+
cos α .sin β
cos α .cos β
cos α .cos β
cos α .cos β−
sin α .sin β
cos α .cos β
=
tanα + tanβ
1 − tanα. tanβ
Example 3: Trigonometric Identities 3
QUESTION
Prove that
sinθ + sin 2θ
1 + cosθ + cos 2θ
= tanθ
In fact, this identity is not valid for all values of θ. Which values are those?
SOLUTION
Step 1 : Identify a strategy
The right-hand side (RHS) of the identity cannotbe simplified. Thus weshould
try simplify the left-handside (LHS). We can alsonotice that the trig function on
the RHS does not havea 2 θ dependence. Thus wewill need to use the double-
angle formulae to simplify the sin 2θ and cos 2θ on the LHS. We knowthat tanθ