CHAPTER 7. DIFFERENTIAL CALCULUS 7.2
point x = a.SOLUTIONStep 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:lim
h→ 0f (x +h)−f (x)
h
In our case x = a. It is simpler to substitute x = a at the end of the calculation.Step 2 : Write f (x +h) and simplifyf (x +h) = 5(x +h)^2 − 4(x +h) + 1
= 5(x^2 + 2xh +h^2 )− 4 x− 4 h + 1
= 5x^2 + 10xh + 5h^2 − 4 x− 4 h + 1Step 3 : Calculate limitlim
h→ 0f (x +h)−f (x)
h=
5 x^2 + 10xh + 5h^2 − 4 x− 4 h + 1− (5x^2 − 4 x + 1)
h= lim
h→ 05 x^2 + 10xh + 5h^2 − 4 x− 4 h + 1− 5 x^2 + 4x− 1
h= lim
h→ 010 xh + 5h^2 − 4 h
h= lim
h→ 0h(10x + 5h− 4)
h
= lim
h→ 0
10 x + 5h− 4
= 10x− 4Step 4 : Calculate gradient at x = a10 x− 4 = 10a− 4Step 5 : Write the final answer
The gradient of the tangent to the curve f (x) = 5x^2 − 4 x + 1 at x = 1 is 10 a− 4.Exercise 7 - 1
Determine the following
1.
lim
x→ 3x^2 − 9
x + 3
2.
lim
x→ 3x + 3
x^2 + 3x